Abstract:The paper studies sequential reasoning over graph-structured data, which stands as a fundamental task in various trending fields like automated math problem solving and neural graph algorithm learning, attracting a lot of research interest. Simultaneously managing both sequential and graph-structured information in such tasks presents a notable challenge. Over recent years, many neural architectures in the literature have emerged to tackle the issue. In this work, we generalize the existing architectures and propose a context-enhanced framework. The crucial innovation is that the reasoning of each step does not only rely on the outcome of the preceding step but also leverages the aggregation of information from more historical outcomes. The idea stems from our observation that in sequential graph reasoning, each step's outcome has a much stronger inner connection with each other compared to traditional seq-to-seq tasks. We show that the framework can effectively integrate with the existing methods, enhancing their reasoning abilities. Empirical evaluations are conducted on the challenging CLRS Reasoning Benchmark, and the results demonstrate that the proposed framework significantly improves the performance of existing architectures, yielding state-of-the-art results across the majority of the datasets within the benchmark.
Abstract:In this paper, we study efficient multi-beam training design for near-field communications to reduce the beam training overhead of conventional single-beam training methods. In particular, the array-division based multi-beam training method, which is widely used in far-field communications, cannot be directly applied to the near-field scenario, since different sub-arrays may observe different user angles and there exist coverage holes in the angular domain. To address these issues, we first devise a new near-field multi-beam codebook by sparsely activating a portion of antennas to form a sparse linear array (SLA), hence generating multiple beams simultaneously by effective exploiting the near-field grating-lobs. Next, a two-stage near-field beam training method is proposed, for which several candidate user locations are identified firstly based on multi-beam sweeping over time, followed by the second stage to further determine the true user location with a small number of single-beam sweeping. Finally, numerical results show that our proposed multi-beam training method significantly reduces the beam training overhead of conventional single-beam training methods, yet achieving comparable rate performance in data transmission.
Abstract:Extremely large-scale array (XL-array) has emerged as one promising technology to improve the spectral efficiency and spatial resolution of future sixth generation (6G) wireless systems.The upsurge in the antenna number antennas renders communication users more likely to be located in the near-field region, which requires a more accurate spherical (instead of planar) wavefront propagation modeling.This inevitably incurs unaffordable beam training overhead when performing a two-dimensional (2D) beam-search in both the angular and range domains.To address this issue, we first introduce a new sparse discrete Fourier transform (DFT) codebook, which exhibits the angular periodicity in the received beam pattern at the user, which motivates us to propose a three-phase beam training scheme.Specifically, in the first phase, we utilize the sparse DFT codebook for beam sweeping in an angular subspace and estimate candidate user angles according to the received beam pattern.Then, a central sub-array is activated to scan specific candidate angles for resolving the issue of angular ambiguity and identity the user angle.In the third phase, the polar-domain codebook is applied in the estimated angle to search the best effective range of the user.Finally, numerical results show that the proposed beam training scheme enabled by sparse DFT codebook achieves 98.67% reduction as compared with the exhaustive-search scheme, yet without compromising rate performance in the high signal-to-ratio (SNR) regime.
Abstract:Extremely large-scale array (XL-array) has emerged as a promising technology to enable near-field communications for achieving enhanced spectrum efficiency and spatial resolution, by drastically increasing the number of antennas. However, this also inevitably incurs higher hardware and energy cost, which may not be affordable in future wireless systems. To address this issue, we propose in this paper to exploit two types of sparse arrays (SAs) for enabling near-field communications. Specifically, we first consider the linear sparse array (LSA) and characterize its near-field beam pattern. It is shown that despite the achieved beam-focusing gain, the LSA introduces several undesired grating-lobes, which have comparable beam power with the main-lobe and are focused on specific regions. An efficient hybrid beamforming design is then proposed for the LSA to deal with the potential strong inter-user interference (IUI). Next, we consider another form of SA, called extended coprime array (ECA), which is composed of two LSA subarrays with different (coprime) inter-antenna spacing. By characterizing the ECA near-field beam pattern, we show that compared with the LSA with the same array sparsity, the ECA can greatly suppress the beam power of near-field grating-lobes thanks to the offset effect of the two subarrays, albeit with a larger number of grating-lobes. This thus motivates us to propose a customized two-phase hybrid beamforming design for the ECA. Finally, numerical results are presented to demonstrate the rate performance gain of the proposed two SAs over the conventional uniform linear array (ULA).
Abstract:This letter investigates computation offloading and transmit precoding co-design for multi-access edge computing (MEC), where multiple MEC users (MUs) equipped with multiple antennas access the MEC server in a non-orthogonal multiple access manner. We aim to minimize the total energy consumption of all MUs while satisfying the latency constraints by jointly optimizing the computational frequency, offloading ratio, and precoding matrix of each MU. For tractability, we first decompose the original problem into three subproblems and then solve these subproblems iteratively until convergence. Simulation results validate the convergence of the proposed method and demonstrate its superiority over baseline algorithms.
Abstract:Extremely large-scale array (XL-array) has emerged as a promising technology to improve the spectrum efficiency and spatial resolution of future wireless systems. However, the huge number of antennas renders the users more likely to locate in the near-field (instead of the far-field) region of the XL-array with spherical wavefront propagation. This inevitably incurs prohibitively high beam training overhead since it requires a two-dimensional (2D) beam search over both the angular and distance domains. To address this issue, we propose in this paper an efficient two-stage hierarchical beam training method for near-field communications. Specifically, in the first stage, we employ the central sub-array of the XL-array to search for a coarse user direction in the angular domain with conventional far-field hierarchical codebook. Then, in the second stage, given the coarse user direction, we progressively search for the fine-grained user direction-and-distance in the polar domain with a dedicatedly designed codebook. Numerical results show that our proposed two-stage hierarchical beam training method can achieve over 99% training overhead reduction as compared to the 2D exhaustive search, yet achieving comparable rate performance.
Abstract:Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) have emerged as a promising technology for achieving full-space coverage. Prior works on STAR-RISs mostly assumed the full and instantaneous channel state information (CSI) is available, which, however, is practically difficult to obtain due to the large number of elements. To address it, we investigate STAR-RIS aided NOMA systems, where two efficient two-timescale transmission protocols are proposed for different channel setups to maximize the average sum-rate. Specifically, 1) for line-of-sight (LoS) dominant channels, we propose the beamforming-then-estimate (BTE) Protocol, where the long-term STAR-RIS coefficients are optimized based on the statistical CSI, while the short-term power allocation at the base station (BS) is designed based on the effective channels; 2) for the rich scattering environment, we propose an alternative partition-then-estimate (PTE) Protocol, where the BS determines the long-term STAR-RIS surface-partition strategy; then the BS estimates the instantaneous subsurface channels and designs its power allocation and STAR-RIS phase-shifts accordingly. Simulation results validate the superiority of our proposed transmission protocols as compared to various benchmarks. It is shown that the BTE Protocol outperforms the PTE Protocol when the number of STAR-RIS elements is large and/or the LoS channel components are dominant, and vice versa.
Abstract:The large amount of deployed smart devices put tremendous traffic pressure on networks. Caching at the edge has been widely studied as a promising technique to solve this problem. To further improve the successful transmission probability (STP) of cache-enabled cellular networks (CEN), we combine the cooperative transmission technique with CEN and propose a novel transmission scheme. Local channel state information (CSI) is introduced at each cooperative base station (BS) to enhance the strength of the signal received by the user. A tight approximation for the STP of this scheme is derived using tools from stochastic geometry. The optimal content placement strategy of this scheme is obtained using a numerical method to maximize the STP. Simulation results demonstrate the optimal strategy achieves significant gains in STP over several comparative baselines with the proposed scheme.