This letter investigates computation offloading and transmit precoding co-design for multi-access edge computing (MEC), where multiple MEC users (MUs) equipped with multiple antennas access the MEC server in a non-orthogonal multiple access manner. We aim to minimize the total energy consumption of all MUs while satisfying the latency constraints by jointly optimizing the computational frequency, offloading ratio, and precoding matrix of each MU. For tractability, we first decompose the original problem into three subproblems and then solve these subproblems iteratively until convergence. Simulation results validate the convergence of the proposed method and demonstrate its superiority over baseline algorithms.