Abstract:Existing roadside perception systems are limited by the absence of publicly available, large-scale, high-quality 3D datasets. Exploring the use of cost-effective, extensive synthetic datasets offers a viable solution to tackle this challenge and enhance the performance of roadside monocular 3D detection. In this study, we introduce the TUMTraf Synthetic Dataset, offering a diverse and substantial collection of high-quality 3D data to augment scarce real-world datasets. Besides, we present WARM-3D, a concise yet effective framework to aid the Sim2Real domain transfer for roadside monocular 3D detection. Our method leverages cheap synthetic datasets and 2D labels from an off-the-shelf 2D detector for weak supervision. We show that WARM-3D significantly enhances performance, achieving a +12.40% increase in mAP 3D over the baseline with only pseudo-2D supervision. With 2D GT as weak labels, WARM-3D even reaches performance close to the Oracle baseline. Moreover, WARM-3D improves the ability of 3D detectors to unseen sample recognition across various real-world environments, highlighting its potential for practical applications.
Abstract:In the context of Intelligent Transportation Systems (ITS), efficient data compression is crucial for managing large-scale point cloud data acquired by roadside LiDAR sensors. The demand for efficient storage, streaming, and real-time object detection capabilities for point cloud data is substantial. This work introduces PointCompress3D, a novel point cloud compression framework tailored specifically for roadside LiDARs. Our framework addresses the challenges of compressing high-resolution point clouds while maintaining accuracy and compatibility with roadside LiDAR sensors. We adapt, extend, integrate, and evaluate three cutting-edge compression methods using our real-world-based TUMTraf dataset family. We achieve a frame rate of 10 FPS while keeping compression sizes below 105 Kb, a reduction of 50 times, and maintaining object detection performance on par with the original data. In extensive experiments and ablation studies, we finally achieved a PSNR d2 of 94.46 and a BPP of 6.54 on our dataset. Future work includes the deployment on the live system. The code is available on our project website: https://pointcompress3d.github.io.
Abstract:Cooperative perception offers several benefits for enhancing the capabilities of autonomous vehicles and improving road safety. Using roadside sensors in addition to onboard sensors increases reliability and extends the sensor range. External sensors offer higher situational awareness for automated vehicles and prevent occlusions. We propose CoopDet3D, a cooperative multi-modal fusion model, and TUMTraf-V2X, a perception dataset, for the cooperative 3D object detection and tracking task. Our dataset contains 2,000 labeled point clouds and 5,000 labeled images from five roadside and four onboard sensors. It includes 30k 3D boxes with track IDs and precise GPS and IMU data. We labeled eight categories and covered occlusion scenarios with challenging driving maneuvers, like traffic violations, near-miss events, overtaking, and U-turns. Through multiple experiments, we show that our CoopDet3D camera-LiDAR fusion model achieves an increase of +14.36 3D mAP compared to a vehicle camera-LiDAR fusion model. Finally, we make our dataset, model, labeling tool, and dev-kit publicly available on our website: https://tum-traffic-dataset.github.io/tumtraf-v2x.
Abstract:The recognition and understanding of traffic incidents, particularly traffic accidents, is a topic of paramount importance in the realm of intelligent transportation systems and intelligent vehicles. This area has continually captured the extensive focus of both the academic and industrial sectors. Identifying and comprehending complex traffic events is highly challenging, primarily due to the intricate nature of traffic environments, diverse observational perspectives, and the multifaceted causes of accidents. These factors have persistently impeded the development of effective solutions. The advent of large vision-language models (VLMs) such as GPT-4V, has introduced innovative approaches to addressing this issue. In this paper, we explore the ability of GPT-4V with a set of representative traffic incident videos and delve into the model's capacity of understanding these complex traffic situations. We observe that GPT-4V demonstrates remarkable cognitive, reasoning, and decision-making ability in certain classic traffic events. Concurrently, we also identify certain limitations of GPT-4V, which constrain its understanding in more intricate scenarios. These limitations merit further exploration and resolution.
Abstract:The curation of large-scale datasets is still costly and requires much time and resources. Data is often manually labeled, and the challenge of creating high-quality datasets remains. In this work, we fill the research gap using active learning for multi-modal 3D object detection. We propose ActiveAnno3D, an active learning framework to select data samples for labeling that are of maximum informativeness for training. We explore various continuous training methods and integrate the most efficient method regarding computational demand and detection performance. Furthermore, we perform extensive experiments and ablation studies with BEVFusion and PV-RCNN on the nuScenes and TUM Traffic Intersection dataset. We show that we can achieve almost the same performance with PV-RCNN and the entropy-based query strategy when using only half of the training data (77.25 mAP compared to 83.50 mAP) of the TUM Traffic Intersection dataset. BEVFusion achieved an mAP of 64.31 when using half of the training data and 75.0 mAP when using the complete nuScenes dataset. We integrate our active learning framework into the proAnno labeling tool to enable AI-assisted data selection and labeling and minimize the labeling costs. Finally, we provide code, weights, and visualization results on our website: https://active3d-framework.github.io/active3d-framework.
Abstract:Event-based cameras are predestined for Intelligent Transportation Systems (ITS). They provide very high temporal resolution and dynamic range, which can eliminate motion blur and make objects easier to recognize at night. However, event-based images lack color and texture compared to images from a conventional rgb camera. Considering that, data fusion between event-based and conventional cameras can combine the strengths of both modalities. For this purpose, extrinsic calibration is necessary. To the best of our knowledge, no targetless calibration between event-based and rgb cameras can handle multiple moving objects, nor data fusion optimized for the domain of roadside ITS exists, nor synchronized event-based and rgb camera datasets in the field of ITS are known. To fill these research gaps, based on our previous work, we extend our targetless calibration approach with clustering methods to handle multiple moving objects. Furthermore, we develop an early fusion, simple late fusion, and a novel spatiotemporal late fusion method. Lastly, we publish the TUMTraf Event Dataset, which contains more than 4k synchronized event-based and rgb images with 21.9k labeled 2D boxes. During our extensive experiments, we verified the effectiveness of our calibration method with multiple moving objects. Furthermore, compared to a single rgb camera, we increased the detection performance of up to +16% mAP in the day and up to +12% mAP in the challenging night with our presented event-based sensor fusion methods. The TUMTraf Event Dataset is available at https://innovation-mobility.com/tumtraf-dataset.
Abstract:Autonomous driving has rapidly developed and shown promising performance with recent advances in hardware and deep learning methods. High-quality datasets are fundamental for developing reliable autonomous driving algorithms. Previous dataset surveys tried to review the datasets but either focused on a limited number or lacked detailed investigation of the characters of datasets. To this end, we present an exhaustive study of over 200 autonomous driving datasets from multiple perspectives, including sensor modalities, data size, tasks, and contextual conditions. We introduce a novel metric to evaluate the impact of each dataset, which can also be a guide for establishing new datasets. We further analyze the annotation process and quality of datasets. Additionally, we conduct an in-depth analysis of the data distribution of several vital datasets. Finally, we discuss the development trend of the future autonomous driving datasets.
Abstract:The applications of Vision-Language Models (VLMs) in the fields of Autonomous Driving (AD) and Intelligent Transportation Systems (ITS) have attracted widespread attention due to their outstanding performance and the ability to leverage Large Language Models (LLMs). By integrating language data, the vehicles, and transportation systems are able to deeply understand real-world environments, improving driving safety and efficiency. In this work, we present a comprehensive survey of the advances in language models in this domain, encompassing current models and datasets. Additionally, we explore the potential applications and emerging research directions. Finally, we thoroughly discuss the challenges and research gap. The paper aims to provide researchers with the current work and future trends of VLMs in AD and ITS.
Abstract:Learning-based solutions for vision tasks require a large amount of labeled training data to ensure their performance and reliability. In single-task vision-based settings, inconsistency-based active learning has proven to be effective in selecting informative samples for annotation. However, there is a lack of research exploiting the inconsistency between multiple tasks in multi-task networks. To address this gap, we propose a novel multi-task active learning strategy for two coupled vision tasks: object detection and semantic segmentation. Our approach leverages the inconsistency between them to identify informative samples across both tasks. We propose three constraints that specify how the tasks are coupled and introduce a method for determining the pixels belonging to the object detected by a bounding box, to later quantify the constraints as inconsistency scores. To evaluate the effectiveness of our approach, we establish multiple baselines for multi-task active learning and introduce a new metric, mean Detection Segmentation Quality (mDSQ), tailored for the multi-task active learning comparison that addresses the performance of both tasks. We conduct extensive experiments on the nuImages and A9 datasets, demonstrating that our approach outperforms existing state-of-the-art methods by up to 3.4% mDSQ on nuImages. Our approach achieves 95% of the fully-trained performance using only 67% of the available data, corresponding to 20% fewer labels compared to random selection and 5% fewer labels compared to state-of-the-art selection strategy. Our code will be made publicly available after the review process.
Abstract:Intelligent Transportation Systems (ITS) allow a drastic expansion of the visibility range and decrease occlusions for autonomous driving. To obtain accurate detections, detailed labeled sensor data for training is required. Unfortunately, high-quality 3D labels of LiDAR point clouds from the infrastructure perspective of an intersection are still rare. Therefore, we provide the A9 Intersection Dataset, which consists of labeled LiDAR point clouds and synchronized camera images. Here, we recorded the sensor output from two roadside cameras and LiDARs mounted on intersection gantry bridges. The point clouds were labeled in 3D by experienced annotators. Furthermore, we provide calibration data between all sensors, which allow the projection of the 3D labels into the camera images and an accurate data fusion. Our dataset consists of 4.8k images and point clouds with more than 57.4k manually labeled 3D boxes. With ten object classes, it has a high diversity of road users in complex driving maneuvers, such as left and right turns, overtaking, and U-turns. In experiments, we provided multiple baselines for the perception tasks. Overall, our dataset is a valuable contribution to the scientific community to perform complex 3D camera-LiDAR roadside perception tasks. Find data, code, and more information at https://a9-dataset.com.