The recognition and understanding of traffic incidents, particularly traffic accidents, is a topic of paramount importance in the realm of intelligent transportation systems and intelligent vehicles. This area has continually captured the extensive focus of both the academic and industrial sectors. Identifying and comprehending complex traffic events is highly challenging, primarily due to the intricate nature of traffic environments, diverse observational perspectives, and the multifaceted causes of accidents. These factors have persistently impeded the development of effective solutions. The advent of large vision-language models (VLMs) such as GPT-4V, has introduced innovative approaches to addressing this issue. In this paper, we explore the ability of GPT-4V with a set of representative traffic incident videos and delve into the model's capacity of understanding these complex traffic situations. We observe that GPT-4V demonstrates remarkable cognitive, reasoning, and decision-making ability in certain classic traffic events. Concurrently, we also identify certain limitations of GPT-4V, which constrain its understanding in more intricate scenarios. These limitations merit further exploration and resolution.