Abstract:Low-light and underwater videos suffer from poor visibility, low contrast, and high noise, necessitating enhancements in visual quality. However, existing approaches typically rely on paired ground truth, which limits their practicality and often fails to maintain temporal consistency. To overcome these obstacles, this paper introduces a novel zero-shot learning approach named Zero-TIG, leveraging the Retinex theory and optical flow techniques. The proposed network consists of an enhancement module and a temporal feedback module. The enhancement module comprises three subnetworks: low-light image denoising, illumination estimation, and reflection denoising. The temporal enhancement module ensures temporal consistency by incorporating histogram equalization, optical flow computation, and image warping to align the enhanced previous frame with the current frame, thereby maintaining continuity. Additionally, we address color distortion in underwater data by adaptively balancing RGB channels. The experimental results demonstrate that our method achieves low-light video enhancement without the need for paired training data, making it a promising and applicable method for real-world scenario enhancement.
Abstract:Neural radiance field (NeRF) research has made significant progress in modeling static video content captured in the wild. However, current models and rendering processes rarely consider scenes captured underwater, which are useful for studying and filming ocean life. They fail to address visual artifacts unique to underwater scenes, such as moving fish and suspended particles. This paper introduces a novel NeRF renderer and optimization scheme for an implicit MLP-based NeRF model. Our renderer reduces the influence of floaters and moving objects that interfere with static objects of interest by estimating a single surface per ray. We use a Gaussian weight function with a small offset to ensure that the transmittance of the surrounding media remains constant. Additionally, we enhance our model with a depth-based scaling function to upscale gradients for near-camera volumes. Overall, our method outperforms the baseline Nerfacto by approximately 7.5\% and SeaThru-NeRF by 6.2% in terms of PSNR. Subjective evaluation also shows a significant reduction of artifacts while preserving details of static targets and background compared to the state of the arts.
Abstract:In image enhancement tasks, such as low-light and underwater image enhancement, a degraded image can correspond to multiple plausible target images due to dynamic photography conditions, such as variations in illumination. This naturally results in a one-to-many mapping challenge. To address this, we propose a Bayesian Enhancement Model (BEM) that incorporates Bayesian Neural Networks (BNNs) to capture data uncertainty and produce diverse outputs. To achieve real-time inference, we introduce a two-stage approach: Stage I employs a BNN to model the one-to-many mappings in the low-dimensional space, while Stage II refines fine-grained image details using a Deterministic Neural Network (DNN). To accelerate BNN training and convergence, we introduce a dynamic \emph{Momentum Prior}. Extensive experiments on multiple low-light and underwater image enhancement benchmarks demonstrate the superiority of our method over deterministic models.
Abstract:The rapid advancements in artificial intelligence (AI), particularly in generative AI and large language models (LLMs), have profoundly impacted the creative industries by enabling innovative content creation, enhancing workflows, and democratizing access to creative tools. This paper explores the significant technological shifts since our previous review in 2022, highlighting how these developments have expanded creative opportunities and efficiency. These technological advancements have enhanced the capabilities of text-to-image, text-to-video, and multimodal generation technologies. In particular, key breakthroughs in LLMs have established new benchmarks in conversational AI, while advancements in image generators have revolutionized content creation. We also discuss AI integration into post-production workflows, which has significantly accelerated and refined traditional processes. Despite these innovations, challenges remain, particularly for the media industry, due to the demands on communication traffic from creative content. We therefore include data compression and quality assessment in this paper. Furthermore, we highlight the trend toward unified AI frameworks capable of addressing multiple creative tasks and underscore the importance of human oversight to mitigate AI-generated inaccuracies. Finally, we explore AI's future potential in the creative sector, stressing the need to navigate emerging challenges to maximize its benefits while addressing associated risks.
Abstract:Novel view synthesis (NVS) has shown significant promise for applications in cinematographic production, particularly through the exploitation of Neural Radiance Fields (NeRF) and Gaussian Splatting (GS). These methods model real 3D scenes, enabling the creation of new shots that are challenging to capture in the real world due to set topology or expensive equipment requirement. This innovation also offers cinematographic advantages such as smooth camera movements, virtual re-shoots, slow-motion effects, etc. This paper explores dynamic NVS with the aim of facilitating the model selection process. We showcase its potential through a short montage filmed using various NVS models.
Abstract:The advances in immersive technologies and 3D reconstruction have enabled the creation of digital replicas of real-world objects and environments with fine details. These processes generate vast amounts of 3D data, requiring more efficient compression methods to satisfy the memory and bandwidth constraints associated with data storage and transmission. However, the development and validation of efficient 3D data compression methods are constrained by the lack of comprehensive and high-quality volumetric video datasets, which typically require much more effort to acquire and consume increased resources compared to 2D image and video databases. To bridge this gap, we present an open multi-view volumetric human dataset, denoted BVI-CR, which contains 18 multi-view RGB-D captures and their corresponding textured polygonal meshes, depicting a range of diverse human actions. Each video sequence contains 10 views in 1080p resolution with durations between 10-15 seconds at 30FPS. Using BVI-CR, we benchmarked three conventional and neural coordinate-based multi-view video compression methods, following the MPEG MIV Common Test Conditions, and reported their rate quality performance based on various quality metrics. The results show the great potential of neural representation based methods in volumetric video compression compared to conventional video coding methods (with an up to 38\% average coding gain in PSNR). This dataset provides a development and validation platform for a variety of tasks including volumetric reconstruction, compression, and quality assessment. The database will be shared publicly at \url{https://github.com/fan-aaron-zhang/bvi-cr}.
Abstract:3D Gaussian splatting (3DGS) offers the capability to achieve real-time high quality 3D scene rendering. However, 3DGS assumes that the scene is in a clear medium environment and struggles to generate satisfactory representations in underwater scenes, where light absorption and scattering are prevalent and moving objects are involved. To overcome these, we introduce a novel Gaussian Splatting-based method, UW-GS, designed specifically for underwater applications. It introduces a color appearance that models distance-dependent color variation, employs a new physics-based density control strategy to enhance clarity for distant objects, and uses a binary motion mask to handle dynamic content. Optimized with a well-designed loss function supporting for scattering media and strengthened by pseudo-depth maps, UW-GS outperforms existing methods with PSNR gains up to 1.26dB. To fully verify the effectiveness of the model, we also developed a new underwater dataset, S-UW, with dynamic object masks.
Abstract:Managing fluid balance in dialysis patients is crucial, as improper management can lead to severe complications. In this paper, we propose a multimodal approach that integrates visual features from lung ultrasound images with clinical data to enhance the prediction of excess body fluid. Our framework employs independent encoders to extract features for each modality and combines them through a cross-domain attention mechanism to capture complementary information. By framing the prediction as a classification task, the model achieves significantly better performance than regression. The results demonstrate that multimodal models consistently outperform single-modality models, particularly when attention mechanisms prioritize tabular data. Pseudo-sample generation further contributes to mitigating the imbalanced classification problem, achieving the highest accuracy of 88.31%. This study underscores the effectiveness of multimodal learning for fluid overload management in dialysis patients, offering valuable insights for improved clinical outcomes.
Abstract:Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct advantages and limitations. In vivo OCT offers rapid, non-invasive imaging but can suffer from clarity issues and motion artifacts, while ex vivo confocal microscopy, providing high-resolution, cellular-detailed color images, is invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired in vivo OCT to ex vivo confocal microscopy images. This marks the first attempt to exploit the inherent 3D information of OCT and translate it into the rich, detailed color domain of confocal microscopy. We also introduce a unique dataset, OCT2Confocal, comprising mouse OCT and confocal retinal images, facilitating the development of and establishing a benchmark for cross-modal image translation research. Our model has been evaluated both quantitatively and qualitatively, achieving Fr\'echet Inception Distance (FID) scores of 0.766 and Kernel Inception Distance (KID) scores as low as 0.153, and leading subjective Mean Opinion Scores (MOS). Our model demonstrated superior image fidelity and quality with limited data over existing methods. Our approach effectively synthesizes color information from 3D confocal images, closely approximating target outcomes and suggesting enhanced potential for diagnostic and monitoring applications in ophthalmology.
Abstract:Atmospheric turbulence in long-range imaging significantly degrades the quality and fidelity of captured scenes due to random variations in both spatial and temporal dimensions. These distortions present a formidable challenge across various applications, from surveillance to astronomy, necessitating robust mitigation strategies. While model-based approaches achieve good results, they are very slow. Deep learning approaches show promise in image and video restoration but have struggled to address these spatiotemporal variant distortions effectively. This paper proposes a new framework that combines geometric restoration with an enhancement module. Random perturbations and geometric distortion are removed using a pyramid architecture with deformable 3D convolutions, resulting in aligned frames. These frames are then used to reconstruct a sharp, clear image via a multi-scale architecture of 3D Swin Transformers. The proposed framework demonstrates superior performance over the state of the art for both synthetic and real atmospheric turbulence effects, with reasonable speed and model size.