Abstract:Test cases are essential for validating the reliability and quality of software applications. Recent studies have demonstrated the capability of Large Language Models (LLMs) to generate useful test cases for given source code. However, the existing work primarily relies on human-written plain prompts, which often leads to suboptimal results since the performance of LLMs can be highly influenced by the prompts. Moreover, these approaches use the same prompt for all LLMs, overlooking the fact that different LLMs might be best suited to different prompts. Given the wide variety of possible prompt formulations, automatically discovering the optimal prompt for each LLM presents a significant challenge. Although there are methods on automated prompt optimization in the natural language processing field, they are hard to produce effective prompts for the test case generation task. First, the methods iteratively optimize prompts by simply combining and mutating existing ones without proper guidance, resulting in prompts that lack diversity and tend to repeat the same errors in the generated test cases. Second, the prompts are generally lack of domain contextual knowledge, limiting LLMs' performance in the task.
Abstract:Equipped with the capability to call functions, modern large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone. However, the effective execution of these tools relies heavily not just on the advanced capabilities of LLMs but also on precise user instructions, which often cannot be ensured in the real world. To evaluate the performance of LLMs tool-use under imperfect instructions, we meticulously examine the real-world instructions queried from users, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench (NoisyToolBench). We find that due to the next-token prediction training objective, LLMs tend to arbitrarily generate the missed argument, which may lead to hallucinations and risks. To address this issue, we propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions. Moreover, to reduce the manual labor involved in user-LLM interaction and assess LLMs performance in tool utilization from both accuracy and efficiency perspectives, we design an automated evaluation tool named ToolEvaluator. Our experiments demonstrate that the AwN significantly outperforms existing frameworks for tool learning in the NoisyToolBench. We will release all related code and datasets to support future research.
Abstract:Websites are critical in today's digital world, with over 1.11 billion currently active and approximately 252,000 new sites launched daily. Converting website layout design into functional UI code is a time-consuming yet indispensable step of website development. Manual methods of converting visual designs into functional code present significant challenges, especially for non-experts. To explore automatic design-to-code solutions, we first conduct a motivating study on GPT-4o and identify three types of issues in generating UI code: element omission, element distortion, and element misarrangement. We further reveal that a focus on smaller visual segments can help multimodal large language models (MLLMs) mitigate these failures in the generation process. In this paper, we propose DCGen, a divide-and-conquer-based approach to automate the translation of webpage design to UI code. DCGen starts by dividing screenshots into manageable segments, generating descriptions for each segment, and then reassembling them into complete UI code for the entire screenshot. We conduct extensive testing with a dataset comprised of real-world websites and various MLLMs and demonstrate that DCGen achieves up to a 14% improvement in visual similarity over competing methods. To the best of our knowledge, DCGen is the first segment-aware prompt-based approach for generating UI code directly from screenshots.
Abstract:With recent advancements in Large Multimodal Models (LMMs) across various domains, a novel prompting method called visual referring prompting has emerged, showing significant potential in enhancing human-computer interaction within multimodal systems. This method offers a more natural and flexible approach to human interaction with these systems compared to traditional text descriptions or coordinates. However, the categorization of visual referring prompting remains undefined, and its impact on the performance of LMMs has yet to be formally examined. In this study, we conduct the first comprehensive analysis of LMMs using a variety of visual referring prompting strategies. We introduce a benchmark dataset called VRPTEST, comprising 3 different visual tasks and 2,275 images, spanning diverse combinations of prompt strategies. Using VRPTEST, we conduct a comprehensive evaluation of eight versions of prominent open-source and proprietary foundation models, including two early versions of GPT-4V. We develop an automated assessment framework based on software metamorphic testing techniques to evaluate the accuracy of LMMs without the need for human intervention or manual labeling. We find that the current proprietary models generally outperform the open-source ones, showing an average accuracy improvement of 22.70%; however, there is still potential for improvement. Moreover, our quantitative analysis shows that the choice of prompt strategy significantly affects the accuracy of LMMs, with variations ranging from -17.5% to +7.3%. Further case studies indicate that an appropriate visual referring prompting strategy can improve LMMs' understanding of context and location information, while an unsuitable one might lead to answer rejection. We also provide insights on minimizing the negative impact of visual referring prompting on LMMs.
Abstract:Large language models (LLMs) have shown promise as automated evaluators for assessing the quality of answers generated by AI systems. However, these LLM-based evaluators exhibit position bias, or inconsistency, when used to evaluate candidate answers in pairwise comparisons, favoring either the first or second answer regardless of content. To address this limitation, we propose PORTIA, an alignment-based system designed to mimic human comparison strategies to calibrate position bias in a lightweight yet effective manner. Specifically, PORTIA splits the answers into multiple segments, aligns similar content across candidate answers, and then merges them back into a single prompt for evaluation by LLMs. We conducted extensive experiments with six diverse LLMs to evaluate 11,520 answer pairs. Our results show that PORTIA markedly enhances the consistency rates for all the models and comparison forms tested, achieving an average relative improvement of 47.46%. Remarkably, PORTIA enables less advanced GPT models to achieve 88% agreement with the state-of-the-art GPT-4 model at just 10% of the cost. Furthermore, it rectifies around 80% of the position bias instances within the GPT-4 model, elevating its consistency rate up to 98%. Subsequent human evaluations indicate that the PORTIA-enhanced GPT-3.5 model can even surpass the standalone GPT-4 in terms of alignment with human evaluators. These findings highlight PORTIA's ability to correct position bias, improve LLM consistency, and boost performance while keeping cost-efficiency. This represents a valuable step toward a more reliable and scalable use of LLMs for automated evaluations across diverse applications.
Abstract:Pre-trained models have been shown effective in many code intelligence tasks. These models are pre-trained on large-scale unlabeled corpus and then fine-tuned in downstream tasks. However, as the inputs to pre-training and downstream tasks are in different forms, it is hard to fully explore the knowledge of pre-trained models. Besides, the performance of fine-tuning strongly relies on the amount of downstream data, while in practice, the scenarios with scarce data are common. Recent studies in the natural language processing (NLP) field show that prompt tuning, a new paradigm for tuning, alleviates the above issues and achieves promising results in various NLP tasks. In prompt tuning, the prompts inserted during tuning provide task-specific knowledge, which is especially beneficial for tasks with relatively scarce data. In this paper, we empirically evaluate the usage and effect of prompt tuning in code intelligence tasks. We conduct prompt tuning on popular pre-trained models CodeBERT and CodeT5 and experiment with three code intelligence tasks including defect prediction, code summarization, and code translation. Our experimental results show that prompt tuning consistently outperforms fine-tuning in all three tasks. In addition, prompt tuning shows great potential in low-resource scenarios, e.g., improving the BLEU scores of fine-tuning by more than 26\% on average for code summarization. Our results suggest that instead of fine-tuning, we could adapt prompt tuning for code intelligence tasks to achieve better performance, especially when lacking task-specific data.
Abstract:Real-world data usually present long-tailed distributions. Training on imbalanced data tends to render neural networks perform well on head classes while much worse on tail classes. The severe sparseness of training instances for the tail classes is the main challenge, which results in biased distribution estimation during training. Plenty of efforts have been devoted to ameliorating the challenge, including data re-sampling and synthesizing new training instances for tail classes. However, no prior research has exploited the transferable knowledge from head classes to tail classes for calibrating the distribution of tail classes. In this paper, we suppose that tail classes can be enriched by similar head classes and propose a novel distribution calibration approach named as label-Aware Distribution Calibration LADC. LADC transfers the statistics from relevant head classes to infer the distribution of tail classes. Sampling from calibrated distribution further facilitates re-balancing the classifier. Experiments on both image and text long-tailed datasets demonstrate that LADC significantly outperforms existing methods.The visualization also shows that LADC provides a more accurate distribution estimation.
Abstract:This paper proposes a novel method for factorising the information in the latent space of an autoencoder (AE), to improve the interpretability of the latent space and facilitate controlled generation. When trained on a dataset with labelled attributes we can produce a latent vector which separates information encoding the attributes from other characteristic information, and also disentangles the attribute information. This then allows us to manipulate each attribute of the latent representation individually without affecting others. Our method, matrix subspace projection, is simpler than the state of the art adversarial network approaches to latent space factorisation. We demonstrate the utility of the method for attribute manipulation tasks on the CelebA image dataset and the E2E text corpus.
Abstract:We address the problem of executing tool-using manipulation skills in scenarios where the objects to be used may vary. We assume that point clouds of the tool and target object can be obtained, but no interpretation or further knowledge about these objects is provided. The system must interpret the point clouds and decide how to use the tool to complete a manipulation task with a target object; this means it must adjust motion trajectories appropriately to complete the task. We tackle three everyday manipulations: scraping material from a tool into a container, cutting, and scooping from a container. Our solution encodes these manipulation skills in a generic way, with parameters that can be filled in at run-time via queries to a robot perception module; the perception module abstracts the functional parts for the tool and extracts key parameters that are needed for the task. The approach is evaluated in simulation and with selected examples on a PR2 robot.