Abstract:Large code models (LCMs), pre-trained on vast code corpora, have demonstrated remarkable performance across a wide array of code-related tasks. Supervised fine-tuning (SFT) plays a vital role in aligning these models with specific requirements and enhancing their performance in particular domains. However, synthesizing high-quality SFT datasets poses a significant challenge due to the uneven quality of datasets and the scarcity of domain-specific datasets. Inspired by APIs as high-level abstractions of code that encapsulate rich semantic information in a concise structure, we propose DataScope, an API-guided dataset synthesis framework designed to enhance the SFT process for LCMs in both general and domain-specific scenarios. DataScope comprises two main components: Dsel and Dgen. On one hand, Dsel employs API coverage as a core metric, enabling efficient dataset synthesis in general scenarios by selecting subsets of existing (uneven-quality) datasets with higher API coverage. On the other hand, Dgen recasts domain dataset synthesis as a process of using API-specified high-level functionality and deliberately-constituted code skeletons to synthesize concrete code. Extensive experiments demonstrate DataScope's effectiveness, with models fine-tuned on its synthesized datasets outperforming those tuned on unoptimized datasets five times larger. Furthermore, a series of analyses on model internals, relevant hyperparameters, and case studies provide additional evidence for the efficacy of our proposed methods. These findings underscore the significance of dataset quality in SFT and advance the field of LCMs by providing an efficient, cost-effective framework for constructing high-quality datasets. This contribution enhances performance across both general and domain-specific scenarios, paving the way for more powerful and tailored LCMs.
Abstract:Jailbreaking is an emerging adversarial attack that bypasses the safety alignment deployed in off-the-shelf large language models (LLMs) and has evolved into four major categories: optimization-based attacks such as Greedy Coordinate Gradient (GCG), jailbreak template-based attacks such as "Do-Anything-Now", advanced indirect attacks like DrAttack, and multilingual jailbreaks. However, delivering a practical jailbreak defense is challenging because it needs to not only handle all the above jailbreak attacks but also incur negligible delay to user prompts, as well as be compatible with both open-source and closed-source LLMs. Inspired by how the traditional security concept of shadow stacks defends against memory overflow attacks, this paper introduces a generic LLM jailbreak defense framework called SelfDefend, which establishes a shadow LLM defense instance to concurrently protect the target LLM instance in the normal stack and collaborate with it for checkpoint-based access control. The effectiveness of SelfDefend builds upon our observation that existing LLMs (both target and defense LLMs) have the capability to identify harmful prompts or intentions in user queries, which we empirically validate using the commonly used GPT-3.5/4 models across all major jailbreak attacks. Our measurements show that SelfDefend enables GPT-3.5 to suppress the attack success rate (ASR) by 8.97-95.74% (average: 60%) and GPT-4 by even 36.36-100% (average: 83%), while incurring negligible effects on normal queries. To further improve the defense's robustness and minimize costs, we employ a data distillation approach to tune dedicated open-source defense models. These models outperform four SOTA defenses and match the performance of GPT-4-based SelfDefend, with significantly lower extra delays. We also empirically show that the tuned models are robust to targeted GCG and prompt injection attacks.
Abstract:Agents based on large language models (LLMs) have demonstrated effectiveness in solving a wide range of tasks by integrating LLMs with key modules such as planning, memory, and tool usage. Increasingly, customers are adopting LLM agents across a variety of commercial applications critical to reliability, including support for mental well-being, chemical synthesis, and software development. Nevertheless, our observations and daily use of LLM agents indicate that they are prone to making erroneous plans, especially when the tasks are complex and require long-term planning. In this paper, we propose PDoctor, a novel and automated approach to testing LLM agents and understanding their erroneous planning. As the first work in this direction, we formulate the detection of erroneous planning as a constraint satisfiability problem: an LLM agent's plan is considered erroneous if its execution violates the constraints derived from the user inputs. To this end, PDoctor first defines a domain-specific language (DSL) for user queries and synthesizes varying inputs with the assistance of the Z3 constraint solver. These synthesized inputs are natural language paragraphs that specify the requirements for completing a series of tasks. Then, PDoctor derives constraints from these requirements to form a testing oracle. We evaluate PDoctor with three mainstream agent frameworks and two powerful LLMs (GPT-3.5 and GPT-4). The results show that PDoctor can effectively detect diverse errors in agent planning and provide insights and error characteristics that are valuable to both agent developers and users. We conclude by discussing potential alternative designs and directions to extend PDoctor.
Abstract:Recent years have witnessed the rapid development of large language models (LLMs) in various domains. To better serve the large number of Chinese users, many commercial vendors in China have adopted localization strategies, training and providing local LLMs specifically customized for Chinese users. Furthermore, looking ahead, one of the key future applications of LLMs will be practical deployment in industrial production by enterprises and users in those sectors. However, the accuracy and robustness of LLMs in industrial scenarios have not been well studied. In this paper, we present a comprehensive empirical study on the accuracy and robustness of LLMs in the context of the Chinese industrial production area. We manually collected 1,200 domain-specific problems from 8 different industrial sectors to evaluate LLM accuracy. Furthermore, we designed a metamorphic testing framework containing four industrial-specific stability categories with eight abilities, totaling 13,631 questions with variants to evaluate LLM robustness. In total, we evaluated 9 different LLMs developed by Chinese vendors, as well as four different LLMs developed by global vendors. Our major findings include: (1) Current LLMs exhibit low accuracy in Chinese industrial contexts, with all LLMs scoring less than 0.6. (2) The robustness scores vary across industrial sectors, and local LLMs overall perform worse than global ones. (3) LLM robustness differs significantly across abilities. Global LLMs are more robust under logical-related variants, while advanced local LLMs perform better on problems related to understanding Chinese industrial terminology. Our study results provide valuable guidance for understanding and promoting the industrial domain capabilities of LLMs from both development and industrial enterprise perspectives. The results further motivate possible research directions and tooling support.
Abstract:With recent advancements in Large Multimodal Models (LMMs) across various domains, a novel prompting method called visual referring prompting has emerged, showing significant potential in enhancing human-computer interaction within multimodal systems. This method offers a more natural and flexible approach to human interaction with these systems compared to traditional text descriptions or coordinates. However, the categorization of visual referring prompting remains undefined, and its impact on the performance of LMMs has yet to be formally examined. In this study, we conduct the first comprehensive analysis of LMMs using a variety of visual referring prompting strategies. We introduce a benchmark dataset called VRPTEST, comprising 3 different visual tasks and 2,275 images, spanning diverse combinations of prompt strategies. Using VRPTEST, we conduct a comprehensive evaluation of eight versions of prominent open-source and proprietary foundation models, including two early versions of GPT-4V. We develop an automated assessment framework based on software metamorphic testing techniques to evaluate the accuracy of LMMs without the need for human intervention or manual labeling. We find that the current proprietary models generally outperform the open-source ones, showing an average accuracy improvement of 22.70%; however, there is still potential for improvement. Moreover, our quantitative analysis shows that the choice of prompt strategy significantly affects the accuracy of LMMs, with variations ranging from -17.5% to +7.3%. Further case studies indicate that an appropriate visual referring prompting strategy can improve LMMs' understanding of context and location information, while an unsuitable one might lead to answer rejection. We also provide insights on minimizing the negative impact of visual referring prompting on LMMs.
Abstract:Large vision-language models (LVLMs) have demonstrated their incredible capability in image understanding and response generation. However, this rich visual interaction also makes LVLMs vulnerable to adversarial examples. In this paper, we formulate a novel and practical gray-box attack scenario that the adversary can only access the visual encoder of the victim LVLM, without the knowledge of its prompts (which are often proprietary for service providers and not publicly available) and its underlying large language model (LLM). This practical setting poses challenges to the cross-prompt and cross-model transferability of targeted adversarial attack, which aims to confuse the LVLM to output a response that is semantically similar to the attacker's chosen target text. To this end, we propose an instruction-tuned targeted attack (dubbed InstructTA) to deliver the targeted adversarial attack on LVLMs with high transferability. Initially, we utilize a public text-to-image generative model to "reverse" the target response into a target image, and employ GPT-4 to infer a reasonable instruction $\boldsymbol{p}^\prime$ from the target response. We then form a local surrogate model (sharing the same visual encoder with the victim LVLM) to extract instruction-aware features of an adversarial image example and the target image, and minimize the distance between these two features to optimize the adversarial example. To further improve the transferability, we augment the instruction $\boldsymbol{p}^\prime$ with instructions paraphrased from an LLM. Extensive experiments demonstrate the superiority of our proposed method in targeted attack performance and transferability.
Abstract:While code generation has been widely used in various software development scenarios, the quality of the generated code is not guaranteed. This has been a particular concern in the era of large language models (LLMs)- based code generation, where LLMs, deemed a complex and powerful black-box model, is instructed by a high-level natural language specification, namely a prompt, to generate code. Nevertheless, effectively evaluating and explaining the code generation capability of LLMs is inherently challenging, given the complexity of LLMs and the lack of transparency. Inspired by the recent progress in causality analysis and its application in software engineering, this paper launches a causality analysis-based approach to systematically analyze the causal relations between the LLM input prompts and the generated code. To handle various technical challenges in this study, we first propose a novel causal graph-based representation of the prompt and the generated code, which is established over the fine-grained, human-understandable concepts in the input prompts. The formed causal graph is then used to identify the causal relations between the prompt and the derived code. We illustrate the insights that our framework can provide by studying over 3 popular LLMs with over 12 prompt adjustment strategies. The results of these studies illustrate the potential of our technique to provide insights into LLM effectiveness, and aid end-users in understanding predictions. Additionally, we demonstrate that our approach provides actionable insights to improve the quality of the LLM-generated code by properly calibrating the prompt.
Abstract:Large language models (LLMs) have shown promise as automated evaluators for assessing the quality of answers generated by AI systems. However, these LLM-based evaluators exhibit position bias, or inconsistency, when used to evaluate candidate answers in pairwise comparisons, favoring either the first or second answer regardless of content. To address this limitation, we propose PORTIA, an alignment-based system designed to mimic human comparison strategies to calibrate position bias in a lightweight yet effective manner. Specifically, PORTIA splits the answers into multiple segments, aligns similar content across candidate answers, and then merges them back into a single prompt for evaluation by LLMs. We conducted extensive experiments with six diverse LLMs to evaluate 11,520 answer pairs. Our results show that PORTIA markedly enhances the consistency rates for all the models and comparison forms tested, achieving an average relative improvement of 47.46%. Remarkably, PORTIA enables less advanced GPT models to achieve 88% agreement with the state-of-the-art GPT-4 model at just 10% of the cost. Furthermore, it rectifies around 80% of the position bias instances within the GPT-4 model, elevating its consistency rate up to 98%. Subsequent human evaluations indicate that the PORTIA-enhanced GPT-3.5 model can even surpass the standalone GPT-4 in terms of alignment with human evaluators. These findings highlight PORTIA's ability to correct position bias, improve LLM consistency, and boost performance while keeping cost-efficiency. This represents a valuable step toward a more reliable and scalable use of LLMs for automated evaluations across diverse applications.
Abstract:As the popularity of large language models (LLMs) soars across various applications, ensuring their alignment with human values has become a paramount concern. In particular, given that LLMs have great potential to serve as general-purpose AI assistants in daily life, their subtly unethical suggestions become a serious and real concern. Tackling the challenge of automatically testing and repairing unethical suggestions is thus demanding. This paper introduces the first framework for testing and repairing unethical suggestions made by LLMs. We first propose ETHICSSUITE, a test suite that presents complex, contextualized, and realistic moral scenarios to test LLMs. We then propose a novel suggest-critic-reflect (SCR) process, serving as an automated test oracle to detect unethical suggestions. We recast deciding if LLMs yield unethical suggestions (a hard problem; often requiring human expertise and costly to decide) into a PCR task that can be automatically checked for violation. Moreover, we propose a novel on-the-fly (OTF) repairing scheme that repairs unethical suggestions made by LLMs in real-time. The OTF scheme is applicable to LLMs in a black-box API setting with moderate cost. With ETHICSSUITE, our study on seven popular LLMs (e.g., ChatGPT, GPT-4) uncovers in total 109,824 unethical suggestions. We apply our OTF scheme on two LLMs (Llama-13B and ChatGPT), which generates valid repair to a considerable amount of unethical ones, paving the way for more ethically conscious LLMs.