Abstract:Two seminal papers--Alon, Livni, Malliaris, Moran (STOC 2019) and Bun, Livni, and Moran (FOCS 2020)--established the equivalence between online learnability and globally stable PAC learnability in binary classification. However, Chase, Chornomaz, Moran, and Yehudayoff (STOC 2024) recently showed that this equivalence does not hold in the agnostic setting. Specifically, they proved that in the agnostic setting, only finite hypothesis classes are globally stable learnable. Therefore, agnostic global stability is too restrictive to capture interesting hypothesis classes. To address this limitation, Chase \emph{et al.} introduced two relaxations of agnostic global stability. In this paper, we characterize the classes that are learnable under their proposed relaxed conditions, resolving the two open problems raised in their work. First, we prove that in the setting where the stability parameter can depend on the excess error (the gap between the learner's error and the best achievable error by the hypothesis class), agnostic stability is fully characterized by the Littlestone dimension. Consequently, as in the realizable case, this form of learnability is equivalent to online learnability. As part of the proof of this theorem, we strengthen the celebrated result of Bun et al. by showing that classes with infinite Littlestone dimension are not stably PAC learnable, even if we allow the stability parameter to depend on the excess error. For the second relaxation proposed by Chase et al., we prove that only finite hypothesis classes are globally stable learnable even if we restrict the agnostic setting to distributions with small population loss.
Abstract:Test cases are essential for validating the reliability and quality of software applications. Recent studies have demonstrated the capability of Large Language Models (LLMs) to generate useful test cases for given source code. However, the existing work primarily relies on human-written plain prompts, which often leads to suboptimal results since the performance of LLMs can be highly influenced by the prompts. Moreover, these approaches use the same prompt for all LLMs, overlooking the fact that different LLMs might be best suited to different prompts. Given the wide variety of possible prompt formulations, automatically discovering the optimal prompt for each LLM presents a significant challenge. Although there are methods on automated prompt optimization in the natural language processing field, they are hard to produce effective prompts for the test case generation task. First, the methods iteratively optimize prompts by simply combining and mutating existing ones without proper guidance, resulting in prompts that lack diversity and tend to repeat the same errors in the generated test cases. Second, the prompts are generally lack of domain contextual knowledge, limiting LLMs' performance in the task.
Abstract:Datasets play a pivotal role in training visual models, facilitating the development of abstract understandings of visual features through diverse image samples and multidimensional attributes. However, in the realm of aesthetic evaluation of artistic images, datasets remain relatively scarce. Existing painting datasets are often characterized by limited scoring dimensions and insufficient annotations, thereby constraining the advancement and application of automatic aesthetic evaluation methods in the domain of painting. To bridge this gap, we introduce the Aesthetics Paintings and Drawings Dataset (APDD), the first comprehensive collection of paintings encompassing 24 distinct artistic categories and 10 aesthetic attributes. Building upon the initial release of APDDv1, our ongoing research has identified opportunities for enhancement in data scale and annotation precision. Consequently, APDDv2 boasts an expanded image corpus and improved annotation quality, featuring detailed language comments to better cater to the needs of both researchers and practitioners seeking high-quality painting datasets. Furthermore, we present an updated version of the Art Assessment Network for Specific Painting Styles, denoted as ArtCLIP. Experimental validation demonstrates the superior performance of this revised model in the realm of aesthetic evaluation, surpassing its predecessor in accuracy and efficacy. The dataset and model are available at https://github.com/BestiVictory/APDDv2.git.
Abstract:Multi-modality image fusion aims to integrate the merits of images from different sources and render high-quality fusion images. However, existing feature extraction and fusion methods are either constrained by inherent local reduction bias and static parameters during inference (CNN) or limited by quadratic computational complexity (Transformers), and cannot effectively extract and fuse features. To solve this problem, we propose a dual-branch image fusion network called Tmamba. It consists of linear Transformer and Mamba, which has global modeling capabilities while maintaining linear complexity. Due to the difference between the Transformer and Mamba structures, the features extracted by the two branches carry channel and position information respectively. T-M interaction structure is designed between the two branches, using global learnable parameters and convolutional layers to transfer position and channel information respectively. We further propose cross-modal interaction at the attention level to obtain cross-modal attention. Experiments show that our Tmamba achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. Code with checkpoints will be available after the peer-review process.
Abstract:Most Camouflaged Object Detection (COD) methods heavily rely on mask annotations, which are time-consuming and labor-intensive to acquire. Existing weakly-supervised COD approaches exhibit significantly inferior performance compared to fully-supervised methods and struggle to simultaneously support all the existing types of camouflaged object labels, including scribbles, bounding boxes, and points. Even for Segment Anything Model (SAM), it is still problematic to handle the weakly-supervised COD and it typically encounters challenges of prompt compatibility of the scribble labels, extreme response, semantically erroneous response, and unstable feature representations, producing unsatisfactory results in camouflaged scenes. To mitigate these issues, we propose a unified COD framework in this paper, termed SAM-COD, which is capable of supporting arbitrary weakly-supervised labels. Our SAM-COD employs a prompt adapter to handle scribbles as prompts based on SAM. Meanwhile, we introduce response filter and semantic matcher modules to improve the quality of the masks obtained by SAM under COD prompts. To alleviate the negative impacts of inaccurate mask predictions, a new strategy of prompt-adaptive knowledge distillation is utilized to ensure a reliable feature representation. To validate the effectiveness of our approach, we have conducted extensive empirical experiments on three mainstream COD benchmarks. The results demonstrate the superiority of our method against state-of-the-art weakly-supervised and even fully-supervised methods.
Abstract:Camouflaged Object Detection (COD) demands models to expeditiously and accurately distinguish objects which conceal themselves seamlessly in the environment. Owing to the subtle differences and ambiguous boundaries, COD is not only a remarkably challenging task for models but also for human annotators, requiring huge efforts to provide pixel-wise annotations. To alleviate the heavy annotation burden, we propose to fulfill this task with the help of only one point supervision. Specifically, by swiftly clicking on each object, we first adaptively expand the original point-based annotation to a reasonable hint area. Then, to avoid partial localization around discriminative parts, we propose an attention regulator to scatter model attention to the whole object through partially masking labeled regions. Moreover, to solve the unstable feature representation of camouflaged objects under only point-based annotation, we perform unsupervised contrastive learning based on differently augmented image pairs (e.g. changing color or doing translation). On three mainstream COD benchmarks, experimental results show that our model outperforms several weakly-supervised methods by a large margin across various metrics.
Abstract:Prediction models are used to predict an outcome based on input variables. Missing data in input variables often occurs at model development and at prediction time. The missForestPredict R package proposes an adaptation of the missForest imputation algorithm that is fast, user-friendly and tailored for prediction settings. The algorithm iteratively imputes variables using random forests until a convergence criterion (unified for continuous and categorical variables and based on the out-of-bag error) is met. The imputation models are saved for each variable and iteration and can be applied later to new observations at prediction time. The missForestPredict package offers extended error monitoring, control over variables used in the imputation and custom initialization. This allows users to tailor the imputation to their specific needs. The missForestPredict algorithm is compared to mean/mode imputation, linear regression imputation, mice, k-nearest neighbours, bagging, miceRanger and IterativeImputer on eight simulated datasets with simulated missingness (48 scenarios) and eight large public datasets using different prediction models. missForestPredict provides competitive results in prediction settings within short computation times.
Abstract:Image aesthetic evaluation is a highly prominent research domain in the field of computer vision. In recent years, there has been a proliferation of datasets and corresponding evaluation methodologies for assessing the aesthetic quality of photographic works, leading to the establishment of a relatively mature research environment. However, in contrast to the extensive research in photographic aesthetics, the field of aesthetic evaluation for paintings and Drawings has seen limited attention until the introduction of the BAID dataset in March 2023. This dataset solely comprises overall scores for high-quality artistic images. Our research marks the pioneering introduction of a multi-attribute, multi-category dataset specifically tailored to the field of painting: Aesthetics of Paintings and Drawings Dataset (APDD). The construction of APDD received active participation from 28 professional artists worldwide, along with dozens of students specializing in the field of art. This dataset encompasses 24 distinct artistic categories and 10 different aesthetic attributes. Each image in APDD has been evaluated by six professionally trained experts in the field of art, including assessments for both total aesthetic scores and aesthetic attribute scores. The final APDD dataset comprises a total of 4985 images, with an annotation count exceeding 31100 entries. Concurrently, we propose an innovative approach: Art Assessment Network for Specific Painting Styles (AANSPS), designed for the assessment of aesthetic attributes in mixed-attribute art datasets. Through this research, our goal is to catalyze advancements in the field of aesthetic evaluation for paintings and drawings, while enriching the available resources and methodologies for its further development and application.
Abstract:Prognostic outcomes related to hospital admissions typically do not suffer from censoring, and can be modeled either categorically or as time-to-event. Competing events are common but often ignored. We compared the performance of random forest (RF) models to predict the risk of central line-associated bloodstream infections (CLABSI) using different outcome operationalizations. We included data from 27478 admissions to the University Hospitals Leuven, covering 30862 catheter episodes (970 CLABSI, 1466 deaths and 28426 discharges) to build static and dynamic RF models for binary (CLABSI vs no CLABSI), multinomial (CLABSI, discharge, death or no event), survival (time to CLABSI) and competing risks (time to CLABSI, discharge or death) outcomes to predict the 7-day CLABSI risk. We evaluated model performance across 100 train/test splits. Performance of binary, multinomial and competing risks models was similar: AUROC was 0.74 for baseline predictions, rose to 0.78 for predictions at day 5 in the catheter episode, and decreased thereafter. Survival models overestimated the risk of CLABSI (E:O ratios between 1.2 and 1.6), and had AUROCs about 0.01 lower than other models. Binary and multinomial models had lowest computation times. Models including multiple outcome events (multinomial and competing risks) display a different internal structure compared to binary and survival models. In the absence of censoring, complex modelling choices do not considerably improve the predictive performance compared to a binary model for CLABSI prediction in our studied settings. Survival models censoring the competing events at their time of occurrence should be avoided.
Abstract:Forecasting the occurrence and absence of novel disease outbreaks is essential for disease management. Here, we develop a general model, with no real-world training data, that accurately forecasts outbreaks and non-outbreaks. We propose a novel framework, using a feature-based time series classification method to forecast outbreaks and non-outbreaks. We tested our methods on synthetic data from a Susceptible-Infected-Recovered model for slowly changing, noisy disease dynamics. Outbreak sequences give a transcritical bifurcation within a specified future time window, whereas non-outbreak (null bifurcation) sequences do not. We identified incipient differences in time series of infectives leading to future outbreaks and non-outbreaks. These differences are reflected in 22 statistical features and 5 early warning signal indicators. Classifier performance, given by the area under the receiver-operating curve, ranged from 0.99 for large expanding windows of training data to 0.7 for small rolling windows. Real-world performances of classifiers were tested on two empirical datasets, COVID-19 data from Singapore and SARS data from Hong Kong, with two classifiers exhibiting high accuracy. In summary, we showed that there are statistical features that distinguish outbreak and non-outbreak sequences long before outbreaks occur. We could detect these differences in synthetic and real-world data sets, well before potential outbreaks occur.