Abstract:When a damaging earthquake occurs, immediate information about casualties is critical for time-sensitive decision-making by emergency response and aid agencies in the first hours and days. Systems such as Prompt Assessment of Global Earthquakes for Response (PAGER) by the U.S. Geological Survey (USGS) were developed to provide a forecast within about 30 minutes of any significant earthquake globally. Traditional systems for estimating human loss in disasters often depend on manually collected early casualty reports from global media, a process that's labor-intensive and slow with notable time delays. Recently, some systems have employed keyword matching and topic modeling to extract relevant information from social media. However, these methods struggle with the complex semantics in multilingual texts and the challenge of interpreting ever-changing, often conflicting reports of death and injury numbers from various unverified sources on social media platforms. In this work, we introduce an end-to-end framework to significantly improve the timeliness and accuracy of global earthquake-induced human loss forecasting using multi-lingual, crowdsourced social media. Our framework integrates (1) a hierarchical casualty extraction model built upon large language models, prompt design, and few-shot learning to retrieve quantitative human loss claims from social media, (2) a physical constraint-aware, dynamic-truth discovery model that discovers the truthful human loss from massive noisy and potentially conflicting human loss claims, and (3) a Bayesian updating loss projection model that dynamically updates the final loss estimation using discovered truths. We test the framework in real-time on a series of global earthquake events in 2021 and 2022 and show that our framework streamlines casualty data retrieval, achieving speed and accuracy comparable to manual methods by USGS.
Abstract:Onsite disasters like earthquakes can trigger cascading hazards and impacts, such as landslides and infrastructure damage, leading to catastrophic losses; thus, rapid and accurate estimates are crucial for timely and effective post-disaster responses. Interferometric Synthetic aperture radar (InSAR) data is important in providing high-resolution onsite information for rapid hazard estimation. Most recent methods using InSAR imagery signals predict a single type of hazard and thus often suffer low accuracy due to noisy and complex signals induced by co-located hazards, impacts, and irrelevant environmental changes (e.g., vegetation changes, human activities). We introduce a novel stochastic variational inference with normalizing flows derived to jointly approximate posteriors of multiple unobserved hazards and impacts from noisy InSAR imagery.
Abstract:Timely and accurate assessment of hurricane-induced building damage is crucial for effective post-hurricane response and recovery efforts. Recently, remote sensing technologies provide large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data immediately after a disastrous event, which can be readily used to conduct rapid building damage assessment. Compared to optical satellite imageries, the Synthetic Aperture Radar can penetrate cloud cover and provide more complete spatial coverage of damaged zones in various weather conditions. However, these InSAR imageries often contain highly noisy and mixed signals induced by co-occurring or co-located building damage, flood, flood/wind-induced vegetation changes, as well as anthropogenic activities, making it challenging to extract accurate building damage information. In this paper, we introduced an approach for rapid post-hurricane building damage detection from InSAR imagery. This approach encoded complex causal dependencies among wind, flood, building damage, and InSAR imagery using a holistic causal Bayesian network. Based on the causal Bayesian network, we further jointly inferred the large-scale unobserved building damage by fusing the information from InSAR imagery with prior physical models of flood and wind, without the need for ground truth labels. Furthermore, we validated our estimation results in a real-world devastating hurricane -- the 2022 Hurricane Ian. We gathered and annotated building damage ground truth data in Lee County, Florida, and compared the introduced method's estimation results with the ground truth and benchmarked it against state-of-the-art models to assess the effectiveness of our proposed method. Results show that our method achieves rapid and accurate detection of building damage, with significantly reduced processing time compared to traditional manual inspection methods.
Abstract:Domain-specific fine-tuning strategies for large pre-trained models received vast attention in recent years. In previously studied settings, the model architectures and parameters are tunable or at least visible, which we refer to as white-box settings. This work considers a new scenario, where we do not have access to a pre-trained model, except for its outputs given inputs, and we call this problem black-box fine-tuning. To illustrate our approach, we first introduce the black-box setting formally on text classification, where the pre-trained model is not only frozen but also invisible. We then propose our solution black-box prompt, a new technique in the prompt-learning family, which can leverage the knowledge learned by pre-trained models from the pre-training corpus. Our experiments demonstrate that the proposed method achieved the state-of-the-art performance on eight datasets. Further analyses on different human-designed objectives, prompt lengths, and intuitive explanations demonstrate the robustness and flexibility of our method.
Abstract:In this paper, we conduct a sentence level sentiment analysis on the product reviews from Amazon and thorough analysis on the model interpretability. For the sentiment analysis task, we use the BiLSTM model with attention mechanism. For the study of interpretability, we consider the attention weights distribution of single sentence and the attention weights of main aspect terms. The model has an accuracy of up to 0.96. And we find that the aspect terms have the same or even more attention weights than the sentimental words in sentences.