Abstract:Multi-modality image fusion aims to integrate the merits of images from different sources and render high-quality fusion images. However, existing feature extraction and fusion methods are either constrained by inherent local reduction bias and static parameters during inference (CNN) or limited by quadratic computational complexity (Transformers), and cannot effectively extract and fuse features. To solve this problem, we propose a dual-branch image fusion network called Tmamba. It consists of linear Transformer and Mamba, which has global modeling capabilities while maintaining linear complexity. Due to the difference between the Transformer and Mamba structures, the features extracted by the two branches carry channel and position information respectively. T-M interaction structure is designed between the two branches, using global learnable parameters and convolutional layers to transfer position and channel information respectively. We further propose cross-modal interaction at the attention level to obtain cross-modal attention. Experiments show that our Tmamba achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. Code with checkpoints will be available after the peer-review process.
Abstract:Unsupervised visible-infrared person re-identification (USVI-ReID) aims to match specified people in infrared images to visible images without annotation, and vice versa. USVI-ReID is a challenging yet under-explored task. Most existing methods address the USVI-ReID problem using cluster-based contrastive learning, which simply employs the cluster center as a representation of a person. However, the cluster center primarily focuses on shared information, overlooking disparity. To address the problem, we propose a Progressive Contrastive Learning with Multi-Prototype (PCLMP) method for USVI-ReID. In brief, we first generate the hard prototype by selecting the sample with the maximum distance from the cluster center. This hard prototype is used in the contrastive loss to emphasize disparity. Additionally, instead of rigidly aligning query images to a specific prototype, we generate the dynamic prototype by randomly picking samples within a cluster. This dynamic prototype is used to retain the natural variety of features while reducing instability in the simultaneous learning of both common and disparate information. Finally, we introduce a progressive learning strategy to gradually shift the model's attention towards hard samples, avoiding cluster deterioration. Extensive experiments conducted on the publicly available SYSU-MM01 and RegDB datasets validate the effectiveness of the proposed method. PCLMP outperforms the existing state-of-the-art method with an average mAP improvement of 3.9%. The source codes will be released.
Abstract:In this paper, we propose a progressive margin loss (PML) approach for unconstrained facial age classification. Conventional methods make strong assumption on that each class owns adequate instances to outline its data distribution, likely leading to bias prediction where the training samples are sparse across age classes. Instead, our PML aims to adaptively refine the age label pattern by enforcing a couple of margins, which fully takes in the in-between discrepancy of the intra-class variance, inter-class variance and class center. Our PML typically incorporates with the ordinal margin and the variational margin, simultaneously plugging in the globally-tuned deep neural network paradigm. More specifically, the ordinal margin learns to exploit the correlated relationship of the real-world age labels. Accordingly, the variational margin is leveraged to minimize the influence of head classes that misleads the prediction of tailed samples. Moreover, our optimization carefully seeks a series of indicator curricula to achieve robust and efficient model training. Extensive experimental results on three face aging datasets demonstrate that our PML achieves compelling performance compared to state of the arts. Code will be made publicly.