Abstract:Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
Abstract:Large language models (LLMs) have gained increasing popularity in robotic task planning due to their exceptional abilities in text analytics and generation, as well as their broad knowledge of the world. However, they fall short in decoding visual cues. LLMs have limited direct perception of the world, which leads to a deficient grasp of the current state of the world. By contrast, the emergence of visual language models (VLMs) fills this gap by integrating visual perception modules, which can enhance the autonomy of robotic task planning. Despite these advancements, VLMs still face challenges, such as the potential for task execution errors, even when provided with accurate instructions. To address such issues, this paper proposes a ReplanVLM framework for robotic task planning. In this study, we focus on error correction interventions. An internal error correction mechanism and an external error correction mechanism are presented to correct errors under corresponding phases. A replan strategy is developed to replan tasks or correct error codes when task execution fails. Experimental results on real robots and in simulation environments have demonstrated the superiority of the proposed framework, with higher success rates and robust error correction capabilities in open-world tasks. Videos of our experiments are available at https://youtu.be/NPk2pWKazJc.
Abstract:Accurate visual understanding is imperative for advancing autonomous systems and intelligent robots. Despite the powerful capabilities of vision-language models (VLMs) in processing complex visual scenes, precisely recognizing obscured or ambiguously presented visual elements remains challenging. To tackle such issues, this paper proposes InsightSee, a multi-agent framework to enhance VLMs' interpretative capabilities in handling complex visual understanding scenarios. The framework comprises a description agent, two reasoning agents, and a decision agent, which are integrated to refine the process of visual information interpretation. The design of these agents and the mechanisms by which they can be enhanced in visual information processing are presented. Experimental results demonstrate that the InsightSee framework not only boosts performance on specific visual tasks but also retains the original models' strength. The proposed framework outperforms state-of-the-art algorithms in 6 out of 9 benchmark tests, with a substantial advancement in multimodal understanding.
Abstract:GAN-based image compression schemes have shown remarkable progress lately due to their high perceptual quality at low bit rates. However, there are two main issues, including 1) the reconstructed image perceptual degeneration in color, texture, and structure as well as 2) the inaccurate entropy model. In this paper, we present a novel GAN-based image compression approach with improved rate-distortion optimization (RDO) process. To achieve this, we utilize the DISTS and MS-SSIM metrics to measure perceptual degeneration in color, texture, and structure. Besides, we absorb the discretized gaussian-laplacian-logistic mixture model (GLLMM) for entropy modeling to improve the accuracy in estimating the probability distributions of the latent representation. During the evaluation process, instead of evaluating the perceptual quality of the reconstructed image via IQA metrics, we directly conduct the Mean Opinion Score (MOS) experiment among different codecs, which fully reflects the actual perceptual results of humans. Experimental results demonstrate that the proposed method outperforms the existing GAN-based methods and the state-of-the-art hybrid codec (i.e., VVC).
Abstract:Just Noticeable Difference (JND) has many applications in multimedia signal processing, especially for visual data processing up to date. It's generally defined as the minimum visual content changes that the human can perspective, which has been studied for decades. However, most of the existing methods only focus on the luminance component of JND modelling and simply regard chrominance components as scaled versions of luminance. In this paper, we propose a JND model to generate the JND by taking the characteristics of full RGB channels into account, termed as the RGB-JND. To this end, an RGB-JND-NET is proposed, where the visual content in full RGB channels is used to extract features for JND generation. To supervise the JND generation, an adaptive image quality assessment combination (AIC) is developed. Besides, the RDB-JND-NET also takes the visual attention into account by automatically mining the underlying relationship between visual attention and the JND, which is further used to constrain the JND spatial distribution. To the best of our knowledge, this is the first work on careful investigation of JND modelling for full-color space. Experimental results demonstrate that the RGB-JND-NET model outperforms the relevant state-of-the-art JND models. Besides, the JND of the red and blue channels are larger than that of the green one according to the experimental results of the proposed model, which demonstrates that more changes can be tolerated in the red and blue channels, in line with the well-known fact that the human visual system is more sensitive to the green channel in comparison with the red and blue ones.
Abstract:Recently, various view synthesis distortion estimation models have been studied to better serve for 3-D video coding. However, they can hardly model the relationship quantitatively among different levels of depth changes, texture degeneration, and the view synthesis distortion (VSD), which is crucial for rate-distortion optimization and rate allocation. In this paper, an auto-weighted layer representation based view synthesis distortion estimation model is developed. Firstly, the sub-VSD (S-VSD) is defined according to the level of depth changes and their associated texture degeneration. After that, a set of theoretical derivations demonstrate that the VSD can be approximately decomposed into the S-VSDs multiplied by their associated weights. To obtain the S-VSDs, a layer-based representation of S-VSD is developed, where all the pixels with the same level of depth changes are represented with a layer to enable efficient S-VSD calculation at the layer level. Meanwhile, a nonlinear mapping function is learnt to accurately represent the relationship between the VSD and S-VSDs, automatically providing weights for S-VSDs during the VSD estimation. To learn such function, a dataset of VSD and its associated S-VSDs are built. Experimental results show that the VSD can be accurately estimated with the weights learnt by the nonlinear mapping function once its associated S-VSDs are available. The proposed method outperforms the relevant state-of-the-art methods in both accuracy and efficiency. The dataset and source code of the proposed method will be available at https://github.com/jianjin008/.
Abstract:With the AI of Things (AIoT) development, a huge amount of visual data, e.g., images and videos, are produced in our daily work and life. These visual data are not only used for human viewing or understanding but also for machine analysis or decision-making, e.g., intelligent surveillance, automated vehicles, and many other smart city applications. To this end, a new image codec paradigm for both human and machine uses is proposed in this work. Firstly, the high-level instance segmentation map and the low-level signal features are extracted with neural networks. Then, the instance segmentation map is further represented as a profile with the proposed 16-bit gray-scale representation. After that, both 16-bit gray-scale profile and signal features are encoded with a lossless codec. Meanwhile, an image predictor is designed and trained to achieve the general-quality image reconstruction with the 16-bit gray-scale profile and signal features. Finally, the residual map between the original image and the predicted one is compressed with a lossy codec, used for high-quality image reconstruction. With such designs, on the one hand, we can achieve scalable image compression to meet the requirements of different human consumption; on the other hand, we can directly achieve several machine vision tasks at the decoder side with the decoded 16-bit gray-scale profile, e.g., object classification, detection, and segmentation. Experimental results show that the proposed codec achieves comparable results as most learning-based codecs and outperforms the traditional codecs (e.g., BPG and JPEG2000) in terms of PSNR and MS-SSIM for image reconstruction. At the same time, it outperforms the existing codecs in terms of the mAP for object detection and segmentation.
Abstract:Supervised cross-modal hashing aims to embed the semantic correlations of heterogeneous modality data into the binary hash codes with discriminative semantic labels. Because of its advantages on retrieval and storage efficiency, it is widely used for solving efficient cross-modal retrieval. However, existing researches equally handle the different tasks of cross-modal retrieval, and simply learn the same couple of hash functions in a symmetric way for them. Under such circumstance, the uniqueness of different cross-modal retrieval tasks are ignored and sub-optimal performance may be brought. Motivated by this, we present a Task-adaptive Asymmetric Deep Cross-modal Hashing (TA-ADCMH) method in this paper. It can learn task-adaptive hash functions for two sub-retrieval tasks via simultaneous modality representation and asymmetric hash learning. Unlike previous cross-modal hashing approaches, our learning framework jointly optimizes semantic preserving that transforms deep features of multimedia data into binary hash codes, and the semantic regression which directly regresses query modality representation to explicit label. With our model, the binary codes can effectively preserve semantic correlations across different modalities, meanwhile, adaptively capture the query semantics. The superiority of TA-ADCMH is proved on two standard datasets from many aspects.