Abstract:Many online advertising platforms provide advertisers with auto-bidding services to enhance their advertising performance. However, most existing auto-bidding algorithms fail to accurately capture the auto-bidding problem formulation that the platform truly faces, let alone solve it. Actually, we argue that the platform should try to help optimize each advertiser's performance to the greatest extent -- which makes $\epsilon$-Nash Equilibrium ($\epsilon$-NE) a necessary solution concept -- while maximizing the social welfare of all the advertisers for the platform's long-term value. Based on this, we introduce the \emph{Nash-Equilibrium Constrained Bidding} (NCB), a new formulation of the auto-bidding problem from the platform's perspective. Specifically, it aims to maximize the social welfare of all advertisers under the $\epsilon$-NE constraint. However, the NCB problem presents significant challenges due to its constrained bi-level structure and the typically large number of advertisers involved. To address these challenges, we propose a \emph{Bi-level Policy Gradient} (BPG) framework with theoretical guarantees. Notably, its computational complexity is independent of the number of advertisers, and the associated gradients are straightforward to compute. Extensive simulated and real-world experiments validate the effectiveness of the BPG framework.
Abstract:3D Morphable Models (3DMMs) have played a pivotal role as a fundamental representation or initialization for 3D avatar animation and reconstruction. However, extending 3DMMs to hair remains challenging due to the difficulty of enforcing vertex-level consistent semantic meaning across hair shapes. This paper introduces a novel method, Semantic-consistent Ray Modeling of Hair (SRM-Hair), for making 3D hair morphable and controlled by coefficients. The key contribution lies in semantic-consistent ray modeling, which extracts ordered hair surface vertices and exhibits notable properties such as additivity for hairstyle fusion, adaptability, flipping, and thickness modification. We collect a dataset of over 250 high-fidelity real hair scans paired with 3D face data to serve as a prior for the 3D morphable hair. Based on this, SRM-Hair can reconstruct a hair mesh combined with a 3D head from a single image. Note that SRM-Hair produces an independent hair mesh, facilitating applications in virtual avatar creation, realistic animation, and high-fidelity hair rendering. Both quantitative and qualitative experiments demonstrate that SRM-Hair achieves state-of-the-art performance in 3D mesh reconstruction. Our project is available at https://github.com/wang-zidu/SRM-Hair
Abstract:Medical image segmentation is fundamental for computer-aided diagnostics, providing accurate delineation of anatomical structures and pathological regions. While common metrics such as Accuracy, DSC, IoU, and HD primarily quantify spatial agreement between predictions and ground-truth labels, they do not assess the calibration quality of segmentation models, which is crucial for clinical reliability. To address this limitation, we propose pixel-wise Expected Calibration Error (pECE), a novel metric that explicitly measures miscalibration at the pixel level, thereby ensuring both spatial precision and confidence reliability. We further introduce a morphological adaptation strategy that applies morphological operations to ground-truth masks before computing calibration losses, particularly benefiting margin-based losses such as Margin SVLS and NACL. Additionally, we present the Signed Distance Calibration Loss (SDC), which aligns boundary geometry with calibration objectives by penalizing discrepancies between predicted and ground-truth signed distance functions (SDFs). Extensive experiments demonstrate that our method not only enhances segmentation performance but also improves calibration quality, yielding more trustworthy confidence estimates. Code is available at: https://github.com/EagleAdelaide/SDC-Loss.
Abstract:Kolmogorov Arnold Networks (KANs) are neural architectures inspired by the Kolmogorov Arnold representation theorem that leverage B Spline parameterizations for flexible, locally adaptive function approximation. Although KANs can capture complex nonlinearities beyond those modeled by standard MultiLayer Perceptrons (MLPs), they frequently exhibit miscalibrated confidence estimates manifesting as overconfidence in dense data regions and underconfidence in sparse areas. In this work, we systematically examine the impact of four critical hyperparameters including Layer Width, Grid Order, Shortcut Function, and Grid Range on the calibration of KANs. Furthermore, we introduce a novel TemperatureScaled Loss (TSL) that integrates a temperature parameter directly into the training objective, dynamically adjusting the predictive distribution during learning. Both theoretical analysis and extensive empirical evaluations on standard benchmarks demonstrate that TSL significantly reduces calibration errors, thereby improving the reliability of probabilistic predictions. Overall, our study provides actionable insights into the design of spline based neural networks and establishes TSL as a robust loss solution for enhancing calibration.
Abstract:Kolmogorov-Arnold Neural Networks (KANs) have gained significant attention in the machine learning community. However, their implementation often suffers from poor training stability and heavy trainable parameter. Furthermore, there is limited understanding of the behavior of the learned activation functions derived from B-splines. In this work, we analyze the behavior of KANs through the lens of spline knots and derive the lower and upper bound for the number of knots in B-spline-based KANs. To address existing limitations, we propose a novel Free Knots KAN that enhances the performance of the original KAN while reducing the number of trainable parameters to match the trainable parameter scale of standard Multi-Layer Perceptrons (MLPs). Additionally, we introduce new a training strategy to ensure $C^2$ continuity of the learnable spline, resulting in smoother activation compared to the original KAN and improve the training stability by range expansion. The proposed method is comprehensively evaluated on 8 datasets spanning various domains, including image, text, time series, multimodal, and function approximation tasks. The promising results demonstrates the feasibility of KAN-based network and the effectiveness of proposed method.
Abstract:Machine unlearning without access to real data distribution is challenging. The existing method based on data-free distillation achieved unlearning by filtering out synthetic samples containing forgetting information but struggled to distill the retaining-related knowledge efficiently. In this work, we analyze that such a problem is due to over-filtering, which reduces the synthesized retaining-related information. We propose a novel method, Inhibited Synthetic PostFilter (ISPF), to tackle this challenge from two perspectives: First, the Inhibited Synthetic, by reducing the synthesized forgetting information; Second, the PostFilter, by fully utilizing the retaining-related information in synthesized samples. Experimental results demonstrate that the proposed ISPF effectively tackles the challenge and outperforms existing methods.
Abstract:Large Language Models have demonstrated impressive performance in many pivotal web applications such as sensor data analysis. However, since LLMs are not designed for time series tasks, simpler models like linear regressions can often achieve comparable performance with far less complexity. In this study, we perform extensive experiments to assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection. We compare the performance of LLMs against simpler baseline models, such as single-layer linear models and randomly initialized LLMs. Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data. In contrast, simpler models consistently outperform LLMs while requiring far fewer parameters. Furthermore, we analyze existing reprogramming techniques and show, through data manifold analysis, that these methods fail to effectively align time series data with language and display pseudo-alignment behaviour in embedding space. Our findings suggest that the performance of LLM-based methods in time series tasks arises from the intrinsic characteristics and structure of time series data, rather than any meaningful alignment with the language model architecture.
Abstract:Irregular Time Series Data (IRTS) has shown increasing prevalence in real-world applications. We observed that IRTS can be divided into two specialized types: Natural Irregular Time Series (NIRTS) and Accidental Irregular Time Series (AIRTS). Various existing methods either ignore the impacts of irregular patterns or statically learn the irregular dynamics of NIRTS and AIRTS data and suffer from limited data availability due to the sparsity of IRTS. We proposed a novel transformer-based framework for general irregular time series data that treats IRTS from four views: Locality, Time, Spatio and Irregularity to motivate the data usage to the highest potential. Moreover, we design a sophisticated irregularity-gate mechanism to adaptively select task-relevant information from irregularity, which improves the generalization ability to various IRTS data. We implement extensive experiments to demonstrate the resistance of our work to three highly missing ratio datasets (88.4\%, 94.9\%, 60\% missing value) and investigate the significance of the irregularity information for both NIRTS and AIRTS by additional ablation study. We release our implementation in https://github.com/IcurasLW/MTSFormer-Irregular_Time_Series.git
Abstract:Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages. In particular, a critical element of the vision-based navigation system is tracking surgical instruments. Compared with 2D instrument tracking methods, 3D instrument tracking has broader value in clinical practice, but is also more challenging due to weak texture, occlusion, and lack of Computer-Aided Design (CAD) models for 3D registration. To solve these challenges, we propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications. In the first registration stage, we incorporate an Instrument Signed Distance Field (SDF) modeling the 3D representation of instruments, achieving CAD-freed 3D registration. Due to this, we can obtain the location and orientation of instruments in the 3D space by matching the video stream with the registered SDF model. In the second tracking stage, we devise a posture graph optimization module, leveraging the historical tracking results of the posture memory pool to optimize the tracking results and improve the occlusion robustness. Furthermore, we collect the Instrument3D dataset to comprehensively evaluate the 3D tracking of surgical instruments. The extensive experiments validate the superiority and scalability of our SurgTrack, by outperforming the state-of-the-arts with a remarkable improvement. The code and dataset are available at https://github.com/wenwucode/SurgTrack.
Abstract:With the increasing emphasis on data privacy, the significance of machine unlearning has grown substantially. Class unlearning, which involves enabling a trained model to forget data belonging to a specific class learned before, is important as classification tasks account for the majority of today's machine learning as a service (MLaaS). Retraining the model on the original data, excluding the data to be forgotten (a.k.a forgetting data), is a common approach to class unlearning. However, the availability of original data during the unlearning phase is not always guaranteed, leading to the exploration of class unlearning with restricted data access. While current unlearning methods with restricted data access usually generate proxy sample via the trained neural network classifier, they typically focus on training and forgetting balanced data. However, the imbalanced original data can cause trouble for these proxies and unlearning, particularly when the forgetting data consists predominantly of the majority class. To address this issue, we propose the GENerative Imbalanced Unlearning (GENIU) framework. GENIU utilizes a Variational Autoencoder (VAE) to concurrently train a proxy generator alongside the original model. These generated proxies accurately represent each class and are leveraged in the unlearning phase, eliminating the reliance on the original training data. To further mitigate the performance degradation resulting from forgetting the majority class, we introduce an in-batch tuning strategy that works with the generated proxies. GENIU is the first practical framework for class unlearning in imbalanced data settings and restricted data access, ensuring the preservation of essential information for future unlearning. Experimental results confirm the superiority of GENIU over existing methods, establishing its effectiveness in empirical scenarios.