Abstract:With the increasing emphasis on data privacy, the significance of machine unlearning has grown substantially. Class unlearning, which involves enabling a trained model to forget data belonging to a specific class learned before, is important as classification tasks account for the majority of today's machine learning as a service (MLaaS). Retraining the model on the original data, excluding the data to be forgotten (a.k.a forgetting data), is a common approach to class unlearning. However, the availability of original data during the unlearning phase is not always guaranteed, leading to the exploration of class unlearning with restricted data access. While current unlearning methods with restricted data access usually generate proxy sample via the trained neural network classifier, they typically focus on training and forgetting balanced data. However, the imbalanced original data can cause trouble for these proxies and unlearning, particularly when the forgetting data consists predominantly of the majority class. To address this issue, we propose the GENerative Imbalanced Unlearning (GENIU) framework. GENIU utilizes a Variational Autoencoder (VAE) to concurrently train a proxy generator alongside the original model. These generated proxies accurately represent each class and are leveraged in the unlearning phase, eliminating the reliance on the original training data. To further mitigate the performance degradation resulting from forgetting the majority class, we introduce an in-batch tuning strategy that works with the generated proxies. GENIU is the first practical framework for class unlearning in imbalanced data settings and restricted data access, ensuring the preservation of essential information for future unlearning. Experimental results confirm the superiority of GENIU over existing methods, establishing its effectiveness in empirical scenarios.
Abstract:Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model. With the increasing emphasis on data privacy, several approaches to machine unlearning have emerged. However, these methods typically rely on complete supervision throughout the unlearning process. Unfortunately, obtaining such supervision, whether for the forgetting or remaining data, can be impractical due to the substantial cost associated with annotating real-world datasets. This challenge prompts us to propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process. Specifically, we introduce a variational approach to approximate the distribution of representations for the remaining data. Leveraging this approximation, we adapt the original model to eliminate information from the forgotten data at the representation level. To further address the issue of lacking supervision information, which hinders alignment with ground truth, we introduce a contrastive loss to facilitate the matching of representations between the remaining data and those of the original model, thus preserving predictive performance. Experimental results across various unlearning tasks demonstrate the effectiveness of our proposed method, Label-Agnostic Forgetting (LAF) without using any labels, which achieves comparable performance to state-of-the-art methods that rely on full supervision information. Furthermore, our approach excels in semi-supervised scenarios, leveraging limited supervision information to outperform fully supervised baselines. This work not only showcases the viability of supervision-free unlearning in deep models but also opens up a new possibility for future research in unlearning at the representation level.
Abstract:Machine unlearning requires removing the information of forgetting data while keeping the necessary information of remaining data. Despite recent advancements in this area, existing methodologies mainly focus on the effect of removing forgetting data without considering the negative impact this can have on the information of the remaining data, resulting in significant performance degradation after data removal. Although some methods try to repair the performance of remaining data after removal, the forgotten information can also return after repair. Such an issue is due to the intricate intertwining of the forgetting and remaining data. Without adequately differentiating the influence of these two kinds of data on the model, existing algorithms take the risk of either inadequate removal of the forgetting data or unnecessary loss of valuable information from the remaining data. To address this shortcoming, the present study undertakes a causal analysis of the unlearning and introduces a novel framework termed Causal Machine Unlearning (CaMU). This framework adds intervention on the information of remaining data to disentangle the causal effects between forgetting data and remaining data. Then CaMU eliminates the causal impact associated with forgetting data while concurrently preserving the causal relevance of the remaining data. Comprehensive empirical results on various datasets and models suggest that CaMU enhances performance on the remaining data and effectively minimizes the influences of forgetting data. Notably, this work is the first to interpret deep model unlearning tasks from a new perspective of causality and provide a solution based on causal analysis, which opens up new possibilities for future research in deep model unlearning.