Abstract:Unsupervised constrained text generation aims to generate text under a given set of constraints without any supervised data. Current state-of-the-art methods stochastically sample edit positions and actions, which may cause unnecessary search steps. In this paper, we propose PMCTG to improve effectiveness by searching for the best edit position and action in each step. Specifically, PMCTG extends perturbed masking technique to effectively search for the most incongruent token to edit. Then it introduces four multi-aspect scoring functions to select edit action to further reduce search difficulty. Since PMCTG does not require supervised data, it could be applied to different generation tasks. We show that under the unsupervised setting, PMCTG achieves new state-of-the-art results in two representative tasks, namely keywords-to-sentence generation and paraphrasing.
Abstract:In recent years, AI-generated music has made significant progress, with several models performing well in multimodal and complex musical genres and scenes. While objective metrics can be used to evaluate generative music, they often lack interpretability for musical evaluation. Therefore, researchers often resort to subjective user studies to assess the quality of the generated works, which can be resource-intensive and less reproducible than objective metrics. This study aims to comprehensively evaluate the subjective, objective, and combined methodologies for assessing AI-generated music, highlighting the advantages and disadvantages of each approach. Ultimately, this study provides a valuable reference for unifying generative AI in the field of music evaluation.
Abstract:Large-scale text-to-image models pre-trained on massive text-image pairs show excellent performance in image synthesis recently. However, image can provide more intuitive visual concepts than plain text. People may ask: how can we integrate the desired visual concept into an existing image, such as our portrait? Current methods are inadequate in meeting this demand as they lack the ability to preserve content or translate visual concepts effectively. Inspired by this, we propose a novel framework named visual concept translator (VCT) with the ability to preserve content in the source image and translate the visual concepts guided by a single reference image. The proposed VCT contains a content-concept inversion (CCI) process to extract contents and concepts, and a content-concept fusion (CCF) process to gather the extracted information to obtain the target image. Given only one reference image, the proposed VCT can complete a wide range of general image-to-image translation tasks with excellent results. Extensive experiments are conducted to prove the superiority and effectiveness of the proposed methods. Codes are available at https://github.com/CrystalNeuro/visual-concept-translator.
Abstract:Reinforcement learning (RL) mimics how humans and animals interact with the environment. The setting is somewhat idealized because, in actual tasks, other agents in the environment have their own goals and behave adaptively to the ego agent. To thrive in those environments, the agent needs to influence other agents so their actions become more helpful and less harmful. Research in computational economics distills two ways to influence others directly: by providing tangible goods (mechanism design) and by providing information (information design). This work investigates information design problems for a group of RL agents. The main challenges are two-fold. One is the information provided will immediately affect the transition of the agent trajectories, which introduces additional non-stationarity. The other is the information can be ignored, so the sender must provide information that the receivers are willing to respect. We formulate the Markov signaling game, and develop the notions of signaling gradient and the extended obedience constraints that address these challenges. Our algorithm is efficient on various mixed-motive tasks and provides further insights into computational economics. Our code is available at https://github.com/YueLin301/InformationDesignMARL.
Abstract:Pictorial visualization seamlessly integrates data and semantic context into visual representation, conveying complex information in a manner that is both engaging and informative. Extensive studies have been devoted to developing authoring tools to simplify the creation of pictorial visualizations. However, mainstream works mostly follow a retrieving-and-editing pipeline that heavily relies on retrieved visual elements from a dedicated corpus, which often compromise the data integrity. Text-guided generation methods are emerging, but may have limited applicability due to its predefined recognized entities. In this work, we propose ChartSpark, a novel system that embeds semantic context into chart based on text-to-image generative model. ChartSpark generates pictorial visualizations conditioned on both semantic context conveyed in textual inputs and data information embedded in plain charts. The method is generic for both foreground and background pictorial generation, satisfying the design practices identified from an empirical research into existing pictorial visualizations. We further develop an interactive visual interface that integrates a text analyzer, editing module, and evaluation module to enable users to generate, modify, and assess pictorial visualizations. We experimentally demonstrate the usability of our tool, and conclude with a discussion of the potential of using text-to-image generative model combined with interactive interface for visualization design.
Abstract:Conversational text-to-SQL is designed to translate multi-turn natural language questions into their corresponding SQL queries. Most state-of-the-art conversational text- to-SQL methods are incompatible with generative pre-trained language models (PLMs), such as T5. In this paper, we present a two-stage unified MultI-task Generation frAmework (MIGA) that leverages PLMs' ability to tackle conversational text-to-SQL. In the pre-training stage, MIGA first decomposes the main task into several related sub-tasks and then unifies them into the same sequence-to-sequence (Seq2Seq) paradigm with task-specific natural language prompts to boost the main task from multi-task training. Later in the fine-tuning stage, we propose four SQL perturbations to alleviate the error propagation problem. MIGA tends to achieve state-of-the-art performance on two benchmarks (SparC and CoSQL). We also provide extensive analyses and discussions to shed light on some new perspectives for conversational text-to-SQL.
Abstract:Despite the emerging progress of integrating evolutionary computation into reinforcement learning, the absence of a high-performance platform endowing composability and massive parallelism causes non-trivial difficulties for research and applications related to asynchronous commercial games. Here we introduce Lamarckian - an open-source platform featuring support for evolutionary reinforcement learning scalable to distributed computing resources. To improve the training speed and data efficiency, Lamarckian adopts optimized communication methods and an asynchronous evolutionary reinforcement learning workflow. To meet the demand for an asynchronous interface by commercial games and various methods, Lamarckian tailors an asynchronous Markov Decision Process interface and designs an object-oriented software architecture with decoupled modules. In comparison with the state-of-the-art RLlib, we empirically demonstrate the unique advantages of Lamarckian on benchmark tests with up to 6000 CPU cores: i) both the sampling efficiency and training speed are doubled when running PPO on Google football game; ii) the training speed is 13 times faster when running PBT+PPO on Pong game. Moreover, we also present two use cases: i) how Lamarckian is applied to generating behavior-diverse game AI; ii) how Lamarckian is applied to game balancing tests for an asynchronous commercial game.
Abstract:This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022. This manuscript focuses on the competition set-up, datasets, the proposed methods and their results. The challenge aims at estimating an HDR image from multiple respective low dynamic range (LDR) observations, which might suffer from under- or over-exposed regions and different sources of noise. The challenge is composed of two tracks with an emphasis on fidelity and complexity constraints: In Track 1, participants are asked to optimize objective fidelity scores while imposing a low-complexity constraint (i.e. solutions can not exceed a given number of operations). In Track 2, participants are asked to minimize the complexity of their solutions while imposing a constraint on fidelity scores (i.e. solutions are required to obtain a higher fidelity score than the prescribed baseline). Both tracks use the same data and metrics: Fidelity is measured by means of PSNR with respect to a ground-truth HDR image (computed both directly and with a canonical tonemapping operation), while complexity metrics include the number of Multiply-Accumulate (MAC) operations and runtime (in seconds).
Abstract:As a challenging multi-player card game, DouDizhu has recently drawn much attention for analyzing competition and collaboration in imperfect-information games. In this paper, we propose PerfectDou, a state-of-the-art DouDizhu AI system that dominates the game, in an actor-critic framework with a proposed technique named perfect information distillation. In detail, we adopt a perfect-training-imperfect-execution framework that allows the agents to utilize the global information to guide the training of the policies as if it is a perfect information game and the trained policies can be used to play the imperfect information game during the actual gameplay. To this end, we characterize card and game features for DouDizhu to represent the perfect and imperfect information. To train our system, we adopt proximal policy optimization with generalized advantage estimation in a parallel training paradigm. In experiments we show how and why PerfectDou beats all existing AI programs, and achieves state-of-the-art performance.
Abstract:We propose an approach to estimate arm and hand dynamics from monocular video by utilizing the relationship between arm and hand. Although monocular full human motion capture technologies have made great progress in recent years, recovering accurate and plausible arm twists and hand gestures from in-the-wild videos still remains a challenge. To solve this problem, our solution is proposed based on the fact that arm poses and hand gestures are highly correlated in most real situations. To fully exploit arm-hand correlation as well as inter-frame information, we carefully design a Spatial-Temporal Parallel Arm-Hand Motion Transformer (PAHMT) to predict the arm and hand dynamics simultaneously. We also introduce new losses to encourage the estimations to be smooth and accurate. Besides, we collect a motion capture dataset including 200K frames of hand gestures and use this data to train our model. By integrating a 2D hand pose estimation model and a 3D human pose estimation model, the proposed method can produce plausible arm and hand dynamics from monocular video. Extensive evaluations demonstrate that the proposed method has advantages over previous state-of-the-art approaches and shows robustness under various challenging scenarios.