Abstract:Uncertainty is a fundamental aspect of real-world scenarios, where perfect information is rarely available. Humans naturally develop complex internal models to navigate incomplete data and effectively respond to unforeseen or partially observed events. In machine learning, Focal Loss is commonly used to reduce misclassification rates by emphasizing hard-to-classify samples. However, it does not guarantee well-calibrated predicted probabilities and may result in models that are overconfident or underconfident. High calibration error indicates a misalignment between predicted probabilities and actual outcomes, affecting model reliability. This research introduces a novel loss function called Focal Calibration Loss (FCL), designed to improve probability calibration while retaining the advantages of Focal Loss in handling difficult samples. By minimizing the Euclidean norm through a strictly proper loss, FCL penalizes the instance-wise calibration error and constrains bounds. We provide theoretical validation for proposed method and apply it to calibrate CheXNet for potential deployment in web-based health-care systems. Extensive evaluations on various models and datasets demonstrate that our method achieves SOTA performance in both calibration and accuracy metrics.
Abstract:Irregular Time Series Data (IRTS) has shown increasing prevalence in real-world applications. We observed that IRTS can be divided into two specialized types: Natural Irregular Time Series (NIRTS) and Accidental Irregular Time Series (AIRTS). Various existing methods either ignore the impacts of irregular patterns or statically learn the irregular dynamics of NIRTS and AIRTS data and suffer from limited data availability due to the sparsity of IRTS. We proposed a novel transformer-based framework for general irregular time series data that treats IRTS from four views: Locality, Time, Spatio and Irregularity to motivate the data usage to the highest potential. Moreover, we design a sophisticated irregularity-gate mechanism to adaptively select task-relevant information from irregularity, which improves the generalization ability to various IRTS data. We implement extensive experiments to demonstrate the resistance of our work to three highly missing ratio datasets (88.4\%, 94.9\%, 60\% missing value) and investigate the significance of the irregularity information for both NIRTS and AIRTS by additional ablation study. We release our implementation in https://github.com/IcurasLW/MTSFormer-Irregular_Time_Series.git
Abstract:Recently, the issue of adversarial robustness in the time series domain has garnered significant attention. However, the available defense mechanisms remain limited, with adversarial training being the predominant approach, though it does not provide theoretical guarantees. Randomized Smoothing has emerged as a standout method due to its ability to certify a provable lower bound on robustness radius under $\ell_p$-ball attacks. Recognizing its success, research in the time series domain has started focusing on these aspects. However, existing research predominantly focuses on time series forecasting, or under the non-$\ell_p$ robustness in statistic feature augmentation for time series classification~(TSC). Our review found that Randomized Smoothing performs modestly in TSC, struggling to provide effective assurances on datasets with poor robustness. Therefore, we propose a self-ensemble method to enhance the lower bound of the probability confidence of predicted labels by reducing the variance of classification margins, thereby certifying a larger radius. This approach also addresses the computational overhead issue of Deep Ensemble~(DE) while remaining competitive and, in some cases, outperforming it in terms of robustness. Both theoretical analysis and experimental results validate the effectiveness of our method, demonstrating superior performance in robustness testing compared to baseline approaches.
Abstract:This study investigates the vulnerability of time series classification models to adversarial attacks, with a focus on how these models process local versus global information under such conditions. By leveraging the Normalized Auto Correlation Function (NACF), an exploration into the inclination of neural networks is conducted. It is demonstrated that regularization techniques, particularly those employing Fast Fourier Transform (FFT) methods and targeting frequency components of perturbations, markedly enhance the effectiveness of attacks. Meanwhile, the defense strategies, like noise introduction and Gaussian filtering, are shown to significantly lower the Attack Success Rate (ASR), with approaches based on noise introducing notably effective in countering high-frequency distortions. Furthermore, models designed to prioritize global information are revealed to possess greater resistance to adversarial manipulations. These results underline the importance of designing attack and defense mechanisms, informed by frequency domain analysis, as a means to considerably reinforce the resilience of neural network models against adversarial threats.
Abstract:Traditional base station siting (BSS) methods rely heavily on drive testing and user feedback, which are laborious and require extensive expertise in communication, networking, and optimization. As large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering, network optimization will witness a revolutionary approach. This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs, and the deployment of autonomous agents as a communication bridge to seamlessly connect the machine language based LLMs with human users using natural language. This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease. As a preliminary exploration, this research first develops a novel LLM-empowered BSS optimization framework, and heuristically proposes four different potential implementations: the strategies based on Prompt-optimized LLM (PoL), human-in-the-Loop LLM (HiLL), LLM-empowered autonomous BSS agent (LaBa), and Cooperative multiple LLM-based autonomous BSS agents (CLaBa). Through evaluation on real-world data, the experiments demonstrate that prompt-assisted LLMs and LLM-based agents can generate more efficient, cost-effective, and reliable network deployments, noticeably enhancing the efficiency of BSS optimization and reducing trivial manual participation.
Abstract:This paper introduces the FinSen dataset that revolutionizes financial market analysis by integrating economic and financial news articles from 197 countries with stock market data. The dataset's extensive coverage spans 15 years from 2007 to 2023 with temporal information, offering a rich, global perspective with 160,000 records on financial market news. Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability. Utilizing the FinSen dataset, we introduce an innovative Focal Calibration Loss, reducing Expected Calibration Error (ECE) to 3.34 percent with the DAN 3 model. This not only improves prediction accuracy but also aligns probabilistic forecasts closely with real outcomes, crucial for the financial sector where predicted probability is paramount. Our approach demonstrates the effectiveness of combining sentiment analysis with precise calibration techniques for trustworthy financial forecasting where the cost of misinterpretation can be high. Finsen Data can be found at [this github URL](https://github.com/EagleAdelaide/FinSen_Dataset.git).
Abstract:Sky survey telescopes play a critical role in modern astronomy, but misalignment of their optical elements can introduce significant variations in point spread functions, leading to reduced data quality. To address this, we need a method to obtain misalignment states, aiding in the reconstruction of accurate point spread functions for data processing methods or facilitating adjustments of optical components for improved image quality. Since sky survey telescopes consist of many optical elements, they result in a vast array of potential misalignment states, some of which are intricately coupled, posing detection challenges. However, by continuously adjusting the misalignment states of optical elements, we can disentangle coupled states. Based on this principle, we propose a deep neural network to extract misalignment states from continuously varying point spread functions in different field of views. To ensure sufficient and diverse training data, we recommend employing a digital twin to obtain data for neural network training. Additionally, we introduce the state graph to store misalignment data and explore complex relationships between misalignment states and corresponding point spread functions, guiding the generation of training data from experiments. Once trained, the neural network estimates misalignment states from observation data, regardless of the impacts caused by atmospheric turbulence, noise, and limited spatial sampling rates in the detector. The method proposed in this paper could be used to provide prior information for the active optics system and the optical system alignment.
Abstract:The powerful modeling capabilities of all-attention-based transformer architectures often cause overfitting and - for natural language processing tasks - lead to an implicitly learned internal language model in the autoregressive transformer decoder complicating the integration of external language models. In this paper, we explore relaxed attention, a simple and easy-to-implement smoothing of the attention weights, yielding a two-fold improvement to the general transformer architecture: First, relaxed attention provides regularization when applied to the self-attention layers in the encoder. Second, we show that it naturally supports the integration of an external language model as it suppresses the implicitly learned internal language model by relaxing the cross attention in the decoder. We demonstrate the benefit of relaxed attention across several tasks with clear improvement in combination with recent benchmark approaches. Specifically, we exceed the former state-of-the-art performance of 26.90% word error rate on the largest public lip-reading LRS3 benchmark with a word error rate of 26.31%, as well as we achieve a top-performing BLEU score of 37.67 on the IWSLT14 (DE$\rightarrow$EN) machine translation task without external language models and virtually no additional model parameters. Code and models will be made publicly available.
Abstract:Pre-trained BERT models have achieved impressive performance in many natural language processing (NLP) tasks. However, in many real-world situations, textual data are usually decentralized over many clients and unable to be uploaded to a central server due to privacy protection and regulations. Federated learning (FL) enables multiple clients collaboratively to train a global model while keeping the local data privacy. A few researches have investigated BERT in federated learning setting, but the problem of performance loss caused by heterogeneous (e.g., non-IID) data over clients remain under-explored. To address this issue, we propose a framework, FedSplitBERT, which handles heterogeneous data and decreases the communication cost by splitting the BERT encoder layers into local part and global part. The local part parameters are trained by the local client only while the global part parameters are trained by aggregating gradients of multiple clients. Due to the sheer size of BERT, we explore a quantization method to further reduce the communication cost with minimal performance loss. Our framework is ready-to-use and compatible to many existing federated learning algorithms, including FedAvg, FedProx and FedAdam. Our experiments verify the effectiveness of the proposed framework, which outperforms baseline methods by a significant margin, while FedSplitBERT with quantization can reduce the communication cost by $11.9\times$.
Abstract:Although today's speech communication systems support various bandwidths from narrowband to super-wideband and beyond, state-of-the art DNN methods for acoustic echo cancellation (AEC) are lacking modularity and bandwidth scalability. Our proposed DNN model builds upon a fully convolutional recurrent network (FCRN) and introduces scalability over various bandwidths up to a fullband (FB) system (48 kHz sampling rate). This modular approach allows joint wideband (WB) pre-training of mask-based AEC and postfilter stages with dedicated losses, followed by a separate training of them on FB data. A third lightweight blind bandwidth extension stage is separately trained on FB data, flexibly allowing to extend the WB postfilter output towards higher bandwidths until reaching FB. Thereby, higher frequency noise and echo are reliably suppressed. On the ICASSP 2022 Acoustic Echo Cancellation Challenge blind test set we report a competitive performance, showing robustness even under highly delayed echo and dynamic echo path changes.