Abstract:The rapid spread of rumors on social media platforms during breaking events severely hinders the dissemination of the truth. Previous studies reveal that the lack of annotated resources hinders the direct detection of unforeseen breaking events not covered in yesterday's news. Leveraging large language models (LLMs) for rumor detection holds significant promise. However, it is challenging for LLMs to provide comprehensive responses to complex or controversial issues due to limited diversity. In this work, we propose the Stance Separated Multi-Agent Debate (S2MAD) to address this issue. Specifically, we firstly introduce Stance Separation, categorizing comments as either supporting or opposing the original claim. Subsequently, claims are classified as subjective or objective, enabling agents to generate reasonable initial viewpoints with different prompt strategies for each type of claim. Debaters then follow specific instructions through multiple rounds of debate to reach a consensus. If a consensus is not reached, a judge agent evaluates the opinions and delivers a final verdict on the claim's veracity. Extensive experiments conducted on two real-world datasets demonstrate that our proposed model outperforms state-of-the-art methods in terms of performance and effectively improves the performance of LLMs in breaking event rumor detection.
Abstract:Due to the rapid spread of rumors on social media, rumor detection has become an extremely important challenge. Existing methods for rumor detection have achieved good performance, as they have collected enough corpus from the same data distribution for model training. However, significant distribution shifts between the training data and real-world test data occur due to differences in news topics, social media platforms, languages and the variance in propagation scale caused by news popularity. This leads to a substantial decline in the performance of these existing methods in Out-Of-Distribution (OOD) situations. To address this problem, we propose a simple and efficient method named Test-time Adaptation for Rumor Detection under distribution shifts (TARD). This method models the propagation of news in the form of a propagation graph, and builds propagation graph test-time adaptation framework, enhancing the model's adaptability and robustness when facing OOD problems. Extensive experiments conducted on two group datasets collected from real-world social platforms demonstrate that our framework outperforms the state-of-the-art methods in performance.