Abstract:Advanced driver assistance systems require a comprehensive understanding of the driver's mental/physical state and traffic context but existing works often neglect the potential benefits of joint learning between these tasks. This paper proposes MMTL-UniAD, a unified multi-modal multi-task learning framework that simultaneously recognizes driver behavior (e.g., looking around, talking), driver emotion (e.g., anxiety, happiness), vehicle behavior (e.g., parking, turning), and traffic context (e.g., traffic jam, traffic smooth). A key challenge is avoiding negative transfer between tasks, which can impair learning performance. To address this, we introduce two key components into the framework: one is the multi-axis region attention network to extract global context-sensitive features, and the other is the dual-branch multimodal embedding to learn multimodal embeddings from both task-shared and task-specific features. The former uses a multi-attention mechanism to extract task-relevant features, mitigating negative transfer caused by task-unrelated features. The latter employs a dual-branch structure to adaptively adjust task-shared and task-specific parameters, enhancing cross-task knowledge transfer while reducing task conflicts. We assess MMTL-UniAD on the AIDE dataset, using a series of ablation studies, and show that it outperforms state-of-the-art methods across all four tasks. The code is available on https://github.com/Wenzhuo-Liu/MMTL-UniAD.
Abstract:Fuzzy inference engine, as one of the most important components of fuzzy systems, can obtain some meaningful outputs from fuzzy sets on input space and fuzzy rule base using fuzzy logic inference methods. In order to enhance the computational efficiency of fuzzy inference engine in multi-input-single-output (MISO) fuzzy systems, this paper aims mainly to investigate three MISO fuzzy hierarchial inference engines based on fuzzy implications satisfying the law of importation with aggregation functions (LIA). We firstly find some aggregation functions for well-known fuzzy implications such that they satisfy (LIA) with them. For a given aggregation function, the fuzzy implication which satisfies (LIA) with this aggregation function is then characterized. Finally, we construct three fuzzy hierarchical inference engines in MISO fuzzy systems applying aforementioned theoretical developments.