Abstract:Four-dimensional (4D) radar--visual odometry (4DRVO) integrates complementary information from 4D radar and cameras, making it an attractive solution for achieving accurate and robust pose estimation. However, 4DRVO may exhibit significant tracking errors owing to three main factors: 1) sparsity of 4D radar point clouds; 2) inaccurate data association and insufficient feature interaction between the 4D radar and camera; and 3) disturbances caused by dynamic objects in the environment, affecting odometry estimation. In this paper, we present 4DRVO-Net, which is a method for 4D radar--visual odometry. This method leverages the feature pyramid, pose warping, and cost volume (PWC) network architecture to progressively estimate and refine poses. Specifically, we propose a multi-scale feature extraction network called Radar-PointNet++ that fully considers rich 4D radar point information, enabling fine-grained learning for sparse 4D radar point clouds. To effectively integrate the two modalities, we design an adaptive 4D radar--camera fusion module (A-RCFM) that automatically selects image features based on 4D radar point features, facilitating multi-scale cross-modal feature interaction and adaptive multi-modal feature fusion. In addition, we introduce a velocity-guided point-confidence estimation module to measure local motion patterns, reduce the influence of dynamic objects and outliers, and provide continuous updates during pose refinement. We demonstrate the excellent performance of our method and the effectiveness of each module design on both the VoD and in-house datasets. Our method outperforms all learning-based and geometry-based methods for most sequences in the VoD dataset. Furthermore, it has exhibited promising performance that closely approaches that of the 64-line LiDAR odometry results of A-LOAM without mapping optimization.
Abstract:In recent years, self-supervised methods for monocular depth estimation has rapidly become an significant branch of depth estimation task, especially for autonomous driving applications. Despite the high overall precision achieved, current methods still suffer from a) imprecise object-level depth inference and b) uncertain scale factor. The former problem would cause texture copy or provide inaccurate object boundary, and the latter would require current methods to have an additional sensor like LiDAR to provide depth groundtruth or stereo camera as additional training inputs, which makes them difficult to implement. In this work, we propose to address these two problems together by introducing DNet. Our contributions are twofold: a) a novel dense connected prediction (DCP) layer is proposed to provide better object-level depth estimation and b) specifically for autonomous driving scenarios, dense geometrical constrains (DGC) is introduced so that precise scale factor can be recovered without additional cost for autonomous vehicles. Extensive experiments have been conducted and, both DCP layer and DGC module are proved to be effectively solving the aforementioned problems respectively. Thanks to DCP layer, object boundary can now be better distinguished in the depth map and the depth is more continues on object level. It is also demonstrated that the performance of using DGC to perform scale recovery is comparable to that using ground-truth information, when the camera height is given and the ground point takes up more than 1.03% of the pixels. Code will be publicly available once the paper is accepted.