Abstract:Understanding long text is of great demands in practice but beyond the reach of most language-image pre-training (LIP) models. In this work, we empirically confirm that the key reason causing such an issue is that the training images are usually paired with short captions, leaving certain tokens easily overshadowed by salient tokens. Towards this problem, our initial attempt is to relabel the data with long captions, however, directly learning with which may lead to performance degradation in understanding short text (e.g., in the image classification task). Then, after incorporating corner tokens to aggregate diverse textual information, we manage to help the model catch up to its original level of short text understanding yet greatly enhance its capability of long text understanding. We further look into whether the model can continuously benefit from longer captions and notice a clear trade-off between the performance and the efficiency. Finally, we validate the effectiveness of our approach using a self-constructed large-scale dataset, which consists of 100M long caption oriented text-image pairs. It is noteworthy that, on the task of long-text image retrieval, we beat the competitor using long captions with 11.1% improvement (i.e., from 72.62% to 83.72%). We will release the code, the model, and the new dataset to facilitate the reproducibility and further research. The project page is available at https://wuw2019.github.io/lotlip.
Abstract:Although recent efforts have extended Neural Radiance Fields (NeRF) into LiDAR point cloud synthesis, the majority of existing works exhibit a strong dependence on precomputed poses. However, point cloud registration methods struggle to achieve precise global pose estimation, whereas previous pose-free NeRFs overlook geometric consistency in global reconstruction. In light of this, we explore the geometric insights of point clouds, which provide explicit registration priors for reconstruction. Based on this, we propose Geometry guided Neural LiDAR Fields(GeoNLF), a hybrid framework performing alternately global neural reconstruction and pure geometric pose optimization. Furthermore, NeRFs tend to overfit individual frames and easily get stuck in local minima under sparse-view inputs. To tackle this issue, we develop a selective-reweighting strategy and introduce geometric constraints for robust optimization. Extensive experiments on NuScenes and KITTI-360 datasets demonstrate the superiority of GeoNLF in both novel view synthesis and multi-view registration of low-frequency large-scale point clouds.
Abstract:Collaborative perception is dedicated to tackling the constraints of single-agent perception, such as occlusions, based on the multiple agents' multi-view sensor inputs. However, most existing works assume an ideal condition that all agents' multi-view cameras are continuously available. In reality, cameras may be highly noisy, obscured or even failed during the collaboration. In this work, we introduce a new robust camera-insensitivity problem: how to overcome the issues caused by the failed camera perspectives, while stabilizing high collaborative performance with low calibration cost? To address above problems, we propose RCDN, a Robust Camera-insensitivity collaborative perception with a novel Dynamic feature-based 3D Neural modeling mechanism. The key intuition of RCDN is to construct collaborative neural rendering field representations to recover failed perceptual messages sent by multiple agents. To better model collaborative neural rendering field, RCDN first establishes a geometry BEV feature based time-invariant static field with other agents via fast hash grid modeling. Based on the static background field, the proposed time-varying dynamic field can model corresponding motion vectors for foregrounds with appropriate positions. To validate RCDN, we create OPV2V-N, a new large-scale dataset with manual labelling under different camera failed scenarios. Extensive experiments conducted on OPV2V-N show that RCDN can be ported to other baselines and improve their robustness in extreme camera-insensitivity settings. Our code and datasets will be available soon.
Abstract:Text-to-3D generation has achieved remarkable success via large-scale text-to-image diffusion models. Nevertheless, there is no paradigm for scaling up the methodology to urban scale. Urban scenes, characterized by numerous elements, intricate arrangement relationships, and vast scale, present a formidable barrier to the interpretability of ambiguous textual descriptions for effective model optimization. In this work, we surmount the limitations by introducing a compositional 3D layout representation into text-to-3D paradigm, serving as an additional prior. It comprises a set of semantic primitives with simple geometric structures and explicit arrangement relationships, complementing textual descriptions and enabling steerable generation. Upon this, we propose two modifications -- (1) We introduce Layout-Guided Variational Score Distillation to address model optimization inadequacies. It conditions the score distillation sampling process with geometric and semantic constraints of 3D layouts. (2) To handle the unbounded nature of urban scenes, we represent 3D scene with a Scalable Hash Grid structure, incrementally adapting to the growing scale of urban scenes. Extensive experiments substantiate the capability of our framework to scale text-to-3D generation to large-scale urban scenes that cover over 1000m driving distance for the first time. We also present various scene editing demonstrations, showing the powers of steerable urban scene generation. Website: https://urbanarchitect.github.io.
Abstract:Although neural radiance fields (NeRFs) have achieved triumphs in image novel view synthesis (NVS), LiDAR NVS remains largely unexplored. Previous LiDAR NVS methods employ a simple shift from image NVS methods while ignoring the dynamic nature and the large-scale reconstruction problem of LiDAR point clouds. In light of this, we propose LiDAR4D, a differentiable LiDAR-only framework for novel space-time LiDAR view synthesis. In consideration of the sparsity and large-scale characteristics, we design a 4D hybrid representation combined with multi-planar and grid features to achieve effective reconstruction in a coarse-to-fine manner. Furthermore, we introduce geometric constraints derived from point clouds to improve temporal consistency. For the realistic synthesis of LiDAR point clouds, we incorporate the global optimization of ray-drop probability to preserve cross-region patterns. Extensive experiments on KITTI-360 and NuScenes datasets demonstrate the superiority of our method in accomplishing geometry-aware and time-consistent dynamic reconstruction. Codes are available at https://github.com/ispc-lab/LiDAR4D.
Abstract:Language-image pre-training largely relies on how precisely and thoroughly a text describes its paired image. In practice, however, the contents of an image can be so rich that well describing them requires lengthy captions (e.g., with 10 sentences), which are usually missing in existing datasets. Consequently, there are currently no clear evidences on whether and how language-image pre-training could benefit from long captions. To figure this out, we first re-caption 30M images with detailed descriptions using a pre-trained Multi-modality Large Language Model (MLLM), and then study the usage of the resulting captions under a contrastive learning framework. We observe that, each sentence within a long caption is very likely to describe the image partially (e.g., an object). Motivated by this, we propose to dynamically sample sub-captions from the text label to construct multiple positive pairs, and introduce a grouping loss to match the embeddings of each sub-caption with its corresponding local image patches in a self-supervised manner. Experimental results on a wide rage of downstream tasks demonstrate the consistent superiority of our method, termed DreamLIP, over previous alternatives, highlighting its fine-grained representational capacity. It is noteworthy that, on the tasks of image-text retrieval and semantic segmentation, our model trained with 30M image-text pairs achieves on par or even better performance than CLIP trained with 400M pairs. Project page is available at https://zyf0619sjtu.github.io/dream-lip.
Abstract:Event cameras can record scene dynamics with high temporal resolution, providing rich scene details for monocular depth estimation (MDE) even at low-level illumination. Therefore, existing complementary learning approaches for MDE fuse intensity information from images and scene details from event data for better scene understanding. However, most methods directly fuse two modalities at pixel level, ignoring that the attractive complementarity mainly impacts high-level patterns that only occupy a few pixels. For example, event data is likely to complement contours of scene objects. In this paper, we discretize the scene into a set of high-level patterns to explore the complementarity and propose a Pattern-based Complementary learning architecture for monocular Depth estimation (PCDepth). Concretely, PCDepth comprises two primary components: a complementary visual representation learning module for discretizing the scene into high-level patterns and integrating complementary patterns across modalities and a refined depth estimator aimed at scene reconstruction and depth prediction while maintaining an efficiency-accuracy balance. Through pattern-based complementary learning, PCDepth fully exploits two modalities and achieves more accurate predictions than existing methods, especially in challenging nighttime scenarios. Extensive experiments on MVSEC and DSEC datasets verify the effectiveness and superiority of our PCDepth. Remarkably, compared with state-of-the-art, PCDepth achieves a 37.9% improvement in accuracy in MVSEC nighttime scenarios.
Abstract:In the rapidly advancing information era, various human behaviors are being precisely recorded in the form of data, including identity information, criminal records, and communication data. Law enforcement agencies can effectively maintain social security and precisely combat criminal activities by analyzing the aforementioned data. In comparison to traditional data analysis methods, deep learning models, relying on the robust computational power in cloud centers, exhibit higher accuracy in extracting data features and inferring data. However, within the architecture of cloud centers, the transmission of data from end devices introduces significant latency, hindering real-time inference of data. Furthermore, low-latency edge computing architectures face limitations in direct deployment due to relatively weak computing and storage capacities of nodes. To address these challenges, a lightweight distributed knowledge graph completion architecture is proposed. Firstly, we introduce a lightweight distributed knowledge graph completion architecture that utilizes knowledge graph embedding for data analysis. Subsequently, to filter out substandard data, a personnel data quality assessment method named PDQA is proposed. Lastly, we present a model pruning algorithm that significantly reduces the model size while maximizing performance, enabling lightweight deployment. In experiments, we compare the effects of 11 advanced models on completing the knowledge graph of public security personnel information. The results indicate that the RotatE model outperforms other models significantly in knowledge graph completion, with the pruned model size reduced by 70\%, and hits@10 reaching 86.97\%.}
Abstract:Medical knowledge extraction methods based on edge computing deploy deep learning models on edge devices to achieve localized entity and relation extraction. This approach avoids transferring substantial sensitive data to cloud data centers, effectively safeguarding the privacy of healthcare services. However, existing relation extraction methods mainly employ a sequential pipeline approach, which classifies relations between determined entities after entity recognition. This mode faces challenges such as error propagation between tasks, insufficient consideration of dependencies between the two subtasks, and the neglect of interrelations between different relations within a sentence. To address these challenges, a joint extraction model with parameter sharing in edge computing is proposed, named CoEx-Bert. This model leverages shared parameterization between two models to jointly extract entities and relations. Specifically, CoEx-Bert employs two models, each separately sharing hidden layer parameters, and combines these two loss functions for joint backpropagation to optimize the model parameters. Additionally, it effectively resolves the issue of entity overlapping when extracting knowledge from unstructured Uyghur medical texts by considering contextual relations. Finally, this model is deployed on edge devices for real-time extraction and inference of Uyghur medical knowledge. Experimental results demonstrate that CoEx-Bert outperforms existing state-of-the-art methods, achieving accuracy, recall, and F1 scores of 90.65\%, 92.45\%, and 91.54\%, respectively, in the Uyghur traditional medical literature dataset. These improvements represent a 6.45\% increase in accuracy, a 9.45\% increase in recall, and a 7.95\% increase in F1 score compared to the baseline.
Abstract:Full-spectrum out-of-distribution (F-OOD) detection aims to accurately recognize in-distribution (ID) samples while encountering semantic and covariate shifts simultaneously. However, existing out-of-distribution (OOD) detectors tend to overfit the covariance information and ignore intrinsic semantic correlation, inadequate for adapting to complex domain transformations. To address this issue, we propose a Likelihood-Aware Semantic Alignment (LSA) framework to promote the image-text correspondence into semantically high-likelihood regions. LSA consists of an offline Gaussian sampling strategy which efficiently samples semantic-relevant visual embeddings from the class-conditional Gaussian distribution, and a bidirectional prompt customization mechanism that adjusts both ID-related and negative context for discriminative ID/OOD boundary. Extensive experiments demonstrate the remarkable OOD detection performance of our proposed LSA especially on the intractable Near-OOD setting, surpassing existing methods by a margin of $15.26\%$ and $18.88\%$ on two F-OOD benchmarks, respectively.