Abstract:Automatic log analysis is essential for the efficient Operation and Maintenance (O&M) of software systems, providing critical insights into system behaviors. However, existing approaches mostly treat log analysis as training a model to perform an isolated task, using task-specific log-label pairs. These task-based approaches are inflexible in generalizing to complex scenarios, depend on task-specific training data, and cost significantly when deploying multiple models. In this paper, we propose an instruction-based training approach that transforms log-label pairs from multiple tasks and domains into a unified format of instruction-response pairs. Our trained model, LogLM, can follow complex user instructions and generalize better across different tasks, thereby increasing flexibility and reducing the dependence on task-specific training data. By integrating major log analysis tasks into a single model, our approach also relieves model deployment burden. Experimentally, LogLM outperforms existing approaches across five log analysis capabilities, and exhibits strong generalization abilities on complex instructions and unseen tasks.
Abstract:As global attention on renewable and clean energy grows, the research and implementation of microgrids become paramount. This paper delves into the methodology of exploring the relationship between the operational and environmental costs of microgrids through multi-objective optimization models. By integrating various optimization algorithms like Genetic Algorithm, Simulated Annealing, Ant Colony Optimization, and Particle Swarm Optimization, we propose an integrated approach for microgrid optimization. Simulation results depict that these algorithms provide different dispatch results under economic and environmental dispatch, revealing distinct roles of diesel generators and micro gas turbines in microgrids. Overall, this study offers in-depth insights and practical guidance for microgrid design and operation.