Abstract:3D semantic occupancy has rapidly become a research focus in the fields of robotics and autonomous driving environment perception due to its ability to provide more realistic geometric perception and its closer integration with downstream tasks. By performing occupancy prediction of the 3D space in the environment, the ability and robustness of scene understanding can be effectively improved. However, existing occupancy prediction tasks are primarily modeled using voxel or point cloud-based approaches: voxel-based network structures often suffer from the loss of spatial information due to the voxelization process, while point cloud-based methods, although better at retaining spatial location information, face limitations in representing volumetric structural details. To address this issue, we propose a dual-modal prediction method based on 3D Gaussian sets and sparse points, which balances both spatial location and volumetric structural information, achieving higher accuracy in semantic occupancy prediction. Specifically, our method adopts a Transformer-based architecture, taking 3D Gaussian sets, sparse points, and queries as inputs. Through the multi-layer structure of the Transformer, the enhanced queries and 3D Gaussian sets jointly contribute to the semantic occupancy prediction, and an adaptive fusion mechanism integrates the semantic outputs of both modalities to generate the final prediction results. Additionally, to further improve accuracy, we dynamically refine the point cloud at each layer, allowing for more precise location information during occupancy prediction. We conducted experiments on the Occ3DnuScenes dataset, and the experimental results demonstrate superior performance of the proposed method on IoU based metrics.
Abstract:Generalized Entity Matching (GEM), which aims at judging whether two records represented in different formats refer to the same real-world entity, is an essential task in data management. The prompt tuning paradigm for pre-trained language models (PLMs), including the recent PromptEM model, effectively addresses the challenges of low-resource GEM in practical applications, offering a robust solution when labeled data is scarce. However, existing prompt tuning models for GEM face the challenges of prompt design and information gap. This paper introduces an augmented prompt tuning framework for the challenges, which consists of two main improvements. The first is an augmented contextualized soft token-based prompt tuning method that extracts a guiding soft token benefit for the PLMs' prompt tuning, and the second is a cost-effective information augmentation strategy leveraging large language models (LLMs). Our approach performs well on the low-resource GEM challenges. Extensive experiments show promising advancements of our basic model without information augmentation over existing methods based on moderate-size PLMs (average 5.24%+), and our model with information augmentation achieves comparable performance compared with fine-tuned LLMs, using less than 14% of the API fee.
Abstract:Nowadays, the versatile capabilities of Pre-trained Large Language Models (LLMs) have attracted much attention from the industry. However, some vertical domains are more interested in the in-domain capabilities of LLMs. For the Networks domain, we present NetEval, an evaluation set for measuring the comprehensive capabilities of LLMs in Network Operations (NetOps). NetEval is designed for evaluating the commonsense knowledge and inference ability in NetOps in a multi-lingual context. NetEval consists of 5,732 questions about NetOps, covering five different sub-domains of NetOps. With NetEval, we systematically evaluate the NetOps capability of 26 publicly available LLMs. The results show that only GPT-4 can achieve a performance competitive to humans. However, some open models like LLaMA 2 demonstrate significant potential.