Abstract:Despite the growing success of deep learning (DL) in offline brain-computer interfaces (BCIs), its adoption in real-time applications remains limited due to three primary challenges. First, most DL solutions are designed for offline decoding, making the transition to online decoding unclear. Second, the use of sliding windows in online decoding substantially increases computational complexity. Third, DL models typically require large amounts of training data, which are often scarce in BCI applications. To address these challenges and enable real-time, cross-subject decoding without subject-specific calibration, we introduce realtime adaptive pooling (RAP), a novel parameter-free method. RAP seamlessly modifies the pooling layers of existing offline DL models to meet online decoding requirements. It also reduces computational complexity during training by jointly decoding consecutive sliding windows. To further alleviate data requirements, our method leverages source-free domain adaptation, enabling privacy-preserving adaptation across varying amounts of target data. Our results demonstrate that RAP provides a robust and efficient framework for real-time BCI applications. It preserves privacy, reduces calibration demands, and supports co-adaptive BCI systems, paving the way for broader adoption of DL in online BCIs. These findings lay a strong foundation for developing user-centered, high-performance BCIs that facilitate immediate feedback and user learning.
Abstract:Providing a promising pathway to link the human brain with external devices, Brain-Computer Interfaces (BCIs) have seen notable advancements in decoding capabilities, primarily driven by increasingly sophisticated techniques, especially deep learning. However, achieving high accuracy in real-world scenarios remains a challenge due to the distribution shift between sessions and subjects. In this paper we will explore the concept of online test-time adaptation (OTTA) to continuously adapt the model in an unsupervised fashion during inference time. Our approach guarantees the preservation of privacy by eliminating the requirement to access the source data during the adaptation process. Additionally, OTTA achieves calibration-free operation by not requiring any session- or subject-specific data. We will investigate the task of electroencephalography (EEG) motor imagery decoding using a lightweight architecture together with different OTTA techniques like alignment, adaptive batch normalization, and entropy minimization. We examine two datasets and three distinct data settings for a comprehensive analysis. Our adaptation methods produce state-of-the-art results, potentially instigating a shift in transfer learning for BCI decoding towards online adaptation.
Abstract:The objective of this study is to investigate the application of various channel attention mechanisms within the domain of brain-computer interface (BCI) for motor imagery decoding. Channel attention mechanisms can be seen as a powerful evolution of spatial filters traditionally used for motor imagery decoding. This study systematically compares such mechanisms by integrating them into a lightweight architecture framework to evaluate their impact. We carefully construct a straightforward and lightweight baseline architecture designed to seamlessly integrate different channel attention mechanisms. This approach is contrary to previous works which only investigate one attention mechanism and usually build a very complex, sometimes nested architecture. Our framework allows us to evaluate and compare the impact of different attention mechanisms under the same circumstances. The easy integration of different channel attention mechanisms as well as the low computational complexity enables us to conduct a wide range of experiments on three datasets to thoroughly assess the effectiveness of the baseline model and the attention mechanisms. Our experiments demonstrate the strength and generalizability of our architecture framework as well as how channel attention mechanisms can improve the performance while maintaining the small memory footprint and low computational complexity of our baseline architecture. Our architecture emphasizes simplicity, offering easy integration of channel attention mechanisms, while maintaining a high degree of generalizability across datasets, making it a versatile and efficient solution for EEG motor imagery decoding within brain-computer interfaces.