University of Toronto
Abstract:Anomaly segmentation is a valuable computer vision task for safety-critical applications that need to be aware of unexpected events. Current state-of-the-art (SOTA) scene-level anomaly segmentation approaches rely on diverse inlier class labels during training, limiting their ability to leverage vast unlabeled datasets and pre-trained vision encoders. These methods may underperform in domains with reduced color diversity and limited object classes. Conversely, existing unsupervised methods struggle with anomaly segmentation with the diverse scenes of less restricted domains. To address these challenges, we introduce FlowCLAS, a novel self-supervised framework that utilizes vision foundation models to extract rich features and employs a normalizing flow network to learn their density distribution. We enhance the model's discriminative power by incorporating Outlier Exposure and contrastive learning in the latent space. FlowCLAS significantly outperforms all existing methods on the ALLO anomaly segmentation benchmark for space robotics and demonstrates competitive results on multiple road anomaly segmentation benchmarks for autonomous driving, including Fishyscapes Lost&Found and Road Anomaly. These results highlight FlowCLAS's effectiveness in addressing the unique challenges of space anomaly segmentation while retaining SOTA performance in the autonomous driving domain without reliance on inlier segmentation labels.
Abstract:Predicting the future motion of surrounding agents is essential for autonomous vehicles (AVs) to operate safely in dynamic, human-robot-mixed environments. However, the scarcity of large-scale driving datasets has hindered the development of robust and generalizable motion prediction models, limiting their ability to capture complex interactions and road geometries. Inspired by recent advances in natural language processing (NLP) and computer vision (CV), self-supervised learning (SSL) has gained significant attention in the motion prediction community for learning rich and transferable scene representations. Nonetheless, existing pre-training methods for motion prediction have largely focused on specific model architectures and single dataset, limiting their scalability and generalizability. To address these challenges, we propose SmartPretrain, a general and scalable SSL framework for motion prediction that is both model-agnostic and dataset-agnostic. Our approach integrates contrastive and reconstructive SSL, leveraging the strengths of both generative and discriminative paradigms to effectively represent spatiotemporal evolution and interactions without imposing architectural constraints. Additionally, SmartPretrain employs a dataset-agnostic scenario sampling strategy that integrates multiple datasets, enhancing data volume, diversity, and robustness. Extensive experiments on multiple datasets demonstrate that SmartPretrain consistently improves the performance of state-of-the-art prediction models across datasets, data splits and main metrics. For instance, SmartPretrain significantly reduces the MissRate of Forecast-MAE by 10.6%. These results highlight SmartPretrain's effectiveness as a unified, scalable solution for motion prediction, breaking free from the limitations of the small-data regime. Codes are available at https://github.com/youngzhou1999/SmartPretrain
Abstract:Object-level mapping builds a 3D map of objects in a scene with detailed shapes and poses from multi-view sensor observations. Conventional methods struggle to build complete shapes and estimate accurate poses due to partial occlusions and sensor noise. They require dense observations to cover all objects, which is challenging to achieve in robotics trajectories. Recent work introduces generative shape priors for object-level mapping from sparse views, but is limited to single-category objects. In this work, we propose a General Object-level Mapping system, GOM, which leverages a 3D diffusion model as shape prior with multi-category support and outputs Neural Radiance Fields (NeRFs) for both texture and geometry for all objects in a scene. GOM includes an effective formulation to guide a pre-trained diffusion model with extra nonlinear constraints from sensor measurements without finetuning. We also develop a probabilistic optimization formulation to fuse multi-view sensor observations and diffusion priors for joint 3D object pose and shape estimation. Our GOM system demonstrates superior multi-category mapping performance from sparse views, and achieves more accurate mapping results compared to state-of-the-art methods on the real-world benchmarks. We will release our code: https://github.com/TRAILab/GeneralObjectMapping.
Abstract:We propose DistillNeRF, a self-supervised learning framework addressing the challenge of understanding 3D environments from limited 2D observations in autonomous driving. Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs, and is trained self-supervised with differentiable rendering to reconstruct RGB, depth, or feature images. Our first insight is to exploit per-scene optimized Neural Radiance Fields (NeRFs) by generating dense depth and virtual camera targets for training, thereby helping our model to learn 3D geometry from sparse non-overlapping image inputs. Second, to learn a semantically rich 3D representation, we propose distilling features from pre-trained 2D foundation models, such as CLIP or DINOv2, thereby enabling various downstream tasks without the need for costly 3D human annotations. To leverage these two insights, we introduce a novel model architecture with a two-stage lift-splat-shoot encoder and a parameterized sparse hierarchical voxel representation. Experimental results on the NuScenes dataset demonstrate that DistillNeRF significantly outperforms existing comparable self-supervised methods for scene reconstruction, novel view synthesis, and depth estimation; and it allows for competitive zero-shot 3D semantic occupancy prediction, as well as open-world scene understanding through distilled foundation model features. Demos and code will be available at https://distillnerf.github.io/.
Abstract:Predicting the future motion of surrounding agents is essential for autonomous vehicles (AVs) to operate safely in dynamic, human-robot-mixed environments. Context information, such as road maps and surrounding agents' states, provides crucial geometric and semantic information for motion behavior prediction. To this end, recent works explore two-stage prediction frameworks where coarse trajectories are first proposed, and then used to select critical context information for trajectory refinement. However, they either incur a large amount of computation or bring limited improvement, if not both. In this paper, we introduce a novel scenario-adaptive refinement strategy, named SmartRefine, to refine prediction with minimal additional computation. Specifically, SmartRefine can comprehensively adapt refinement configurations based on each scenario's properties, and smartly chooses the number of refinement iterations by introducing a quality score to measure the prediction quality and remaining refinement potential of each scenario. SmartRefine is designed as a generic and flexible approach that can be seamlessly integrated into most state-of-the-art motion prediction models. Experiments on Argoverse (1 & 2) show that our method consistently improves the prediction accuracy of multiple state-of-the-art prediction models. Specifically, by adding SmartRefine to QCNet, we outperform all published ensemble-free works on the Argoverse 2 leaderboard (single agent track) at submission. Comprehensive studies are also conducted to ablate design choices and explore the mechanism behind multi-iteration refinement. Codes are available at https://github.com/opendilab/SmartRefine/
Abstract:Multi-object tracking (MOT) methods have seen a significant boost in performance recently, due to strong interest from the research community and steadily improving object detection methods. The majority of tracking methods follow the tracking-by-detection (TBD) paradigm, blindly trust the incoming detections with no sense of their associated localization uncertainty. This lack of uncertainty awareness poses a problem in safety-critical tasks such as autonomous driving where passengers could be put at risk due to erroneous detections that have propagated to downstream tasks, including MOT. While there are existing works in probabilistic object detection that predict the localization uncertainty around the boxes, no work in 2D MOT for autonomous driving has studied whether these estimates are meaningful enough to be leveraged effectively in object tracking. We introduce UncertaintyTrack, a collection of extensions that can be applied to multiple TBD trackers to account for localization uncertainty estimates from probabilistic object detectors. Experiments on the Berkeley Deep Drive MOT dataset show that the combination of our method and informative uncertainty estimates reduces the number of ID switches by around 19\% and improves mMOTA by 2-3%. The source code is available at https://github.com/TRAILab/UncertaintyTrack
Abstract:Out-of-distribution (OOD) detection is a critical task for safe deployment of learning systems in the open world setting. In this work, we investigate the use of feature density estimation via normalizing flows for OOD detection and present a fully unsupervised approach which requires no exposure to OOD data, avoiding researcher bias in OOD sample selection. This is a post-hoc method which can be applied to any pretrained model, and involves training a lightweight auxiliary normalizing flow model to perform the out-of-distribution detection via density thresholding. Experiments on OOD detection in image classification show strong results for far-OOD data detection with only a single epoch of flow training, including 98.2% AUROC for ImageNet-1k vs. Textures, which exceeds the state of the art by 7.8%. We additionally explore the connection between the feature space distribution of the pretrained model and the performance of our method. Finally, we provide insights into training pitfalls that have plagued normalizing flows for use in OOD detection.
Abstract:Despite significant recent progress in the field of autonomous driving, modern methods still struggle and can incur serious accidents when encountering long-tail unforeseen events and challenging urban scenarios. On the one hand, large language models (LLM) have shown impressive reasoning capabilities that approach "Artificial General Intelligence". On the other hand, previous autonomous driving methods tend to rely on limited-format inputs (e.g. sensor data and navigation waypoints), restricting the vehicle's ability to understand language information and interact with humans. To this end, this paper introduces LMDrive, a novel language-guided, end-to-end, closed-loop autonomous driving framework. LMDrive uniquely processes and integrates multi-modal sensor data with natural language instructions, enabling interaction with humans and navigation software in realistic instructional settings. To facilitate further research in language-based closed-loop autonomous driving, we also publicly release the corresponding dataset which includes approximately 64K instruction-following data clips, and the LangAuto benchmark that tests the system's ability to handle complex instructions and challenging driving scenarios. Extensive closed-loop experiments are conducted to demonstrate LMDrive's effectiveness. To the best of our knowledge, we're the very first work to leverage LLMs for closed-loop end-to-end autonomous driving. Codes, models, and datasets can be found at https://github.com/opendilab/LMDrive
Abstract:In this work, we aim to improve the 3D reasoning ability of Transformers in multi-view 3D human pose estimation. Recent works have focused on end-to-end learning-based transformer designs, which struggle to resolve geometric information accurately, particularly during occlusion. Instead, we propose a novel hybrid model, MVGFormer, which has a series of geometric and appearance modules organized in an iterative manner. The geometry modules are learning-free and handle all viewpoint-dependent 3D tasks geometrically which notably improves the model's generalization ability. The appearance modules are learnable and are dedicated to estimating 2D poses from image signals end-to-end which enables them to achieve accurate estimates even when occlusion occurs, leading to a model that is both accurate and generalizable to new cameras and geometries. We evaluate our approach for both in-domain and out-of-domain settings, where our model consistently outperforms state-of-the-art methods, and especially does so by a significant margin in the out-of-domain setting. We will release the code and models: https://github.com/XunshanMan/MVGFormer.
Abstract:3D object-level mapping is a fundamental problem in robotics, which is especially challenging when object CAD models are unavailable during inference. In this work, we propose a framework that can reconstruct high-quality object-level maps for unknown objects. Our approach takes multiple RGB-D images as input and outputs dense 3D shapes and 9-DoF poses (including 3 scale parameters) for detected objects. The core idea of our approach is to leverage a learnt generative model for shape categories as a prior and to formulate a probabilistic, uncertainty-aware optimization framework for 3D reconstruction. We derive a probabilistic formulation that propagates shape and pose uncertainty through two novel loss functions. Unlike current state-of-the-art approaches, we explicitly model the uncertainty of the object shapes and poses during our optimization, resulting in a high-quality object-level mapping system. Moreover, the resulting shape and pose uncertainties, which we demonstrate can accurately reflect the true errors of our object maps, can also be useful for downstream robotics tasks such as active vision. We perform extensive evaluations on indoor and outdoor real-world datasets, achieving achieves substantial improvements over state-of-the-art methods. Our code will be available at https://github.com/TRAILab/UncertainShapePose.