Abstract:Accurate, efficient, and robust state estimation is more important than ever in robotics as the variety of platforms and complexity of tasks continue to grow. Historically, discrete-time filters and smoothers have been the dominant approach, in which the estimated variables are states at discrete sample times. The paradigm of continuous-time state estimation proposes an alternative strategy by estimating variables that express the state as a continuous function of time, which can be evaluated at any query time. Not only can this benefit downstream tasks such as planning and control, but it also significantly increases estimator performance and flexibility, as well as reduces sensor preprocessing and interfacing complexity. Despite this, continuous-time methods remain underutilized, potentially because they are less well-known within robotics. To remedy this, this work presents a unifying formulation of these methods and the most exhaustive literature review to date, systematically categorizing prior work by methodology, application, state variables, historical context, and theoretical contribution to the field. By surveying splines and Gaussian processes together and contextualizing works from other research domains, this work identifies and analyzes open problems in continuous-time state estimation and suggests new research directions.
Abstract:How can a robot safely navigate around people exhibiting complex motion patterns? Reinforcement Learning (RL) or Deep RL (DRL) in simulation holds some promise, although much prior work relies on simulators that fail to precisely capture the nuances of real human motion. To address this gap, we propose Deep Residual Model Predictive Control (DR-MPC), a method to enable robots to quickly and safely perform DRL from real-world crowd navigation data. By blending MPC with model-free DRL, DR-MPC overcomes the traditional DRL challenges of large data requirements and unsafe initial behavior. DR-MPC is initialized with MPC-based path tracking, and gradually learns to interact more effectively with humans. To further accelerate learning, a safety component estimates when the robot encounters out-of-distribution states and guides it away from likely collisions. In simulation, we show that DR-MPC substantially outperforms prior work, including traditional DRL and residual DRL models. Real-world experiments show our approach successfully enables a robot to navigate a variety of crowded situations with few errors using less than 4 hours of training data.
Abstract:Frequency-modulated continuous-wave (FMCW) scanning radar has emerged as an alternative to spinning LiDAR for state estimation on mobile robots. Radar's longer wavelength is less affected by small particulates, providing operational advantages in challenging environments such as dust, smoke, and fog. This paper presents Radar Teach and Repeat (RT&R): a full-stack radar system for long-term off-road robot autonomy. RT&R can drive routes reliably in off-road cluttered areas without any GPS. We benchmark the radar system's closed-loop path-tracking performance and compare it to its 3D LiDAR counterpart. 11.8 km of autonomous driving was completed without interventions using only radar and gyro for navigation. RT&R was evaluated on different routes with progressively less structured scene geometry. RT&R achieved lateral path-tracking root mean squared errors (RMSE) of 5.6 cm, 7.5 cm, and 12.1 cm as the routes became more challenging. On the robot we used for testing, these RMSE values are less than half of the width of one tire (24 cm). These same routes have worst-case errors of 21.7 cm, 24.0 cm, and 43.8 cm. We conclude that radar is a viable alternative to LiDAR for long-term autonomy in challenging off-road scenarios. The implementation of RT&R is open-source and available at: https://github.com/utiasASRL/vtr3.
Abstract:We present closed-form expressions for marginalizing and conditioning Gaussians onto linear manifolds, and demonstrate how to apply these expressions to smooth nonlinear manifolds through linearization. Although marginalization and conditioning onto axis-aligned manifolds are well-established procedures, doing so onto non-axis-aligned manifolds is not as well understood. We demonstrate the utility of our expressions through three applications: 1) approximation of the projected normal distribution, where the quality of our linearized approximation increases as problem nonlinearity decreases; 2) covariance extraction in Koopman SLAM, where our covariances are shown to be consistent on a real-world dataset; and 3) covariance extraction in constrained GTSAM, where our covariances are shown to be consistent in simulation.
Abstract:In this paper, we introduce a LiDAR-based robot navigation system, based on novel object-aware affordance-based costmaps. Utilizing a 3D object detection network, our system identifies objects of interest in LiDAR keyframes, refines their 3D poses with the Iterative Closest Point (ICP) algorithm, and tracks them via Kalman filters and the Hungarian algorithm for data association. It then updates existing object poses with new associated detections and creates new object maps for unmatched detections. Using the maintained object-level mapping system, our system creates affordance-driven object costmaps for proactive collision avoidance in path planning. Additionally, we address the scarcity of indoor semantic LiDAR data by introducing an automated labeling technique. This method utilizes a CAD model database for accurate ground-truth annotations, encompassing bounding boxes, positions, orientations, and point-wise semantics of each object in LiDAR sequences. Our extensive evaluations, conducted in both simulated and real-world robot platforms, highlights the effectiveness of proactive object avoidance by using object affordance costmaps, enhancing robotic navigation safety and efficiency. The system can operate in real-time onboard and we intend to release our code and data for public use.
Abstract:Continuous-time batch state estimation using Gaussian processes is an efficient approach to estimate the trajectories of robots over time. In the past, relatively simple physics-motivated priors have been considered for such approaches, using assumptions such as constant velocity or acceleration. This paper presents an approach to incorporating exogenous control inputs, such as velocity or acceleration commands, into the continuous Gaussian process state-estimation framework. It is shown that this approach generalizes across different domains in robotics, making it applicable to both the estimation of continuous-time trajectories for mobile robots and continuum-robot shapes. Results show that incorporating control inputs leads to more informed priors, potentially requiring less measurements and estimation nodes to obtain accurate estimates. This makes the approach particularly useful in situations in which limited sensing is available.
Abstract:In recent years, many estimation problems in robotics have been shown to be solvable to global optimality using their semidefinite relaxations. However, the runtime complexity of off-the-shelve semidefinite programming solvers is up to cubic in problem size, which inhibits real-time solutions of problems involving large state dimensions. We show that for a large class of problems, namely those with chordal sparsity, we can reduce the complexity of these solvers to linear in problem size. In particular, we show how to replace the large positive-semidefinite variable by a number of smaller interconnected ones using the well-known chordal decomposition. This formulation also allows for the straightforward application of the alternating direction method of multipliers (ADMM), which can exploit parallelism for increased scalability. We show in simulation that the algorithms provide a significant speed up for two example problems: matrix-weighted and range-only localization.
Abstract:Differentiable optimization is a powerful new paradigm capable of reconciling model-based and learning-based approaches in robotics. However, the majority of robotics optimization problems are non-convex and current differentiable optimization techniques are therefore prone to convergence to local minima. When this occurs, the gradients provided by these existing solvers can be wildly inaccurate and will ultimately corrupt the training process. On the other hand, any non-convex robotics problems can be framed as polynomial optimization problems and, in turn, admit convex relaxations that can be used to recover a global solution via so-called certifiably correct methods. We present SDPRLayers, an approach that leverages these methods as well as state-of-the-art convex implicit differentiation techniques to provide certifiably correct gradients throughout the training process. We introduce this approach and showcase theoretical results that provide conditions under which correctness of the gradients is guaranteed. We demonstrate our approach on two simple-but-demonstrative simulated examples, which expose the potential pitfalls of existing, state-of-the-art, differentiable optimization methods. We apply our method in a real-world application: we train a deep neural network to detect image keypoints for robot localization in challenging lighting conditions. An open-source, PyTorch implementation of SDPRLayers will be made available upon paper acceptance.
Abstract:In the field of deep point cloud understanding, KPConv is a unique architecture that uses kernel points to locate convolutional weights in space, instead of relying on Multi-Layer Perceptron (MLP) encodings. While it initially achieved success, it has since been surpassed by recent MLP networks that employ updated designs and training strategies. Building upon the kernel point principle, we present two novel designs: KPConvD (depthwise KPConv), a lighter design that enables the use of deeper architectures, and KPConvX, an innovative design that scales the depthwise convolutional weights of KPConvD with kernel attention values. Using KPConvX with a modern architecture and training strategy, we are able to outperform current state-of-the-art approaches on the ScanObjectNN, Scannetv2, and S3DIS datasets. We validate our design choices through ablation studies and release our code and models.
Abstract:In this paper, we propose the FoMo (For\^et Montmorency) dataset: a comprehensive, multi-season data collection. Located in the Montmorency Forest, Quebec, Canada, our dataset will capture a rich variety of sensory data over six distinct trajectories totaling 6 kilometers, repeated through different seasons to accumulate 42 kilometers of recorded data. The boreal forest environment increases the diversity of datasets for mobile robot navigation. This proposed dataset will feature a broad array of sensor modalities, including lidar, radar, and a navigation-grade Inertial Measurement Unit (IMU), against the backdrop of challenging boreal forest conditions. Notably, the FoMo dataset will be distinguished by its inclusion of seasonal variations, such as changes in tree canopy and snow depth up to 2 meters, presenting new challenges for robot navigation algorithms. Alongside, we will offer a centimeter-level accurate ground truth, obtained through Post Processed Kinematic (PPK) Global Navigation Satellite System (GNSS) correction, facilitating precise evaluation of odometry and localization algorithms. This work aims to spur advancements in autonomous navigation, enabling the development of robust algorithms capable of handling the dynamic, unstructured environments characteristic of boreal forests. With a public odometry and localization leaderboard and a dedicated software suite, we invite the robotics community to engage with the FoMo dataset by exploring new frontiers in robot navigation under extreme environmental variations. We seek feedback from the community based on this proposal to make the dataset as useful as possible. For further details and supplementary materials, please visit https://norlab-ulaval.github.io/FoMo-website/.