Abstract:3D multi-object tracking and trajectory prediction are two crucial modules in autonomous driving systems. Generally, the two tasks are handled separately in traditional paradigms and a few methods have started to explore modeling these two tasks in a joint manner recently. However, these approaches suffer from the limitations of single-frame training and inconsistent coordinate representations between tracking and prediction tasks. In this paper, we propose a streaming and unified framework for joint 3D Multi-Object Tracking and trajectory Prediction (StreamMOTP) to address the above challenges. Firstly, we construct the model in a streaming manner and exploit a memory bank to preserve and leverage the long-term latent features for tracked objects more effectively. Secondly, a relative spatio-temporal positional encoding strategy is introduced to bridge the gap of coordinate representations between the two tasks and maintain the pose-invariance for trajectory prediction. Thirdly, we further improve the quality and consistency of predicted trajectories with a dual-stream predictor. We conduct extensive experiments on popular nuSences dataset and the experimental results demonstrate the effectiveness and superiority of StreamMOTP, which outperforms previous methods significantly on both tasks. Furthermore, we also prove that the proposed framework has great potential and advantages in actual applications of autonomous driving.
Abstract:Neural implicit representations have recently demonstrated considerable potential in the field of visual simultaneous localization and mapping (SLAM). This is due to their inherent advantages, including low storage overhead and representation continuity. However, these methods necessitate the size of the scene as input, which is impractical for unknown scenes. Consequently, we propose NeB-SLAM, a neural block-based scalable RGB-D SLAM for unknown scenes. Specifically, we first propose a divide-and-conquer mapping strategy that represents the entire unknown scene as a set of sub-maps. These sub-maps are a set of neural blocks of fixed size. Then, we introduce an adaptive map growth strategy to achieve adaptive allocation of neural blocks during camera tracking and gradually cover the whole unknown scene. Finally, extensive evaluations on various datasets demonstrate that our method is competitive in both mapping and tracking when targeting unknown environments.
Abstract:End-to-End paradigms use a unified framework to implement multi-tasks in an autonomous driving system. Despite simplicity and clarity, the performance of end-to-end autonomous driving methods on sub-tasks is still far behind the single-task methods. Meanwhile, the widely used dense BEV features in previous end-to-end methods make it costly to extend to more modalities or tasks. In this paper, we propose a Sparse query-centric paradigm for end-to-end Autonomous Driving (SparseAD), where the sparse queries completely represent the whole driving scenario across space, time and tasks without any dense BEV representation. Concretely, we design a unified sparse architecture for perception tasks including detection, tracking, and online mapping. Moreover, we revisit motion prediction and planning, and devise a more justifiable motion planner framework. On the challenging nuScenes dataset, SparseAD achieves SOTA full-task performance among end-to-end methods and significantly narrows the performance gap between end-to-end paradigms and single-task methods. Codes will be released soon.
Abstract:In this paper, we present two fast and interpretable decomposition methods for 2D homography, which are named Similarity-Kernel-Similarity (SKS) and Affine-Core-Affine (ACA) transformations respectively. Under the minimal $4$-point configuration, the first and the last similarity transformations in SKS are computed by two anchor points on target and source planes, respectively. Then, the other two point correspondences can be exploited to compute the middle kernel transformation with only four parameters. Furthermore, ACA uses three anchor points to compute the first and the last affine transformations, followed by computation of the middle core transformation utilizing the other one point correspondence. ACA can compute a homography up to a scale with only $85$ floating-point operations (FLOPs), without even any division operations. Therefore, as a plug-in module, ACA facilitates the traditional feature-based Random Sample Consensus (RANSAC) pipeline, as well as deep homography pipelines estimating $4$-point offsets. In addition to the advantages of geometric parameterization and computational efficiency, SKS and ACA can express each element of homography by a polynomial of input coordinates ($7$th degree to $9$th degree), extend the existing essential Similarity-Affine-Projective (SAP) decomposition and calculate 2D affine transformations in a unified way. Source codes are released in https://github.com/cscvlab/SKS-Homography.
Abstract:Video compression is widely used in digital television, surveillance systems, and virtual reality. Real-time video decoding is crucial in practical scenarios. Recently, neural video compression (NVC) combines traditional coding with deep learning, achieving impressive compression efficiency. Nevertheless, the NVC models involve high computational costs and complex memory access patterns, challenging real-time hardware implementations. To relieve this burden, we propose an algorithm and hardware co-design framework named NVCA for video decoding on resource-limited devices. Firstly, a CNN-Transformer hybrid network is developed to improve compression performance by capturing multi-scale non-local features. In addition, we propose a fast algorithm-based sparse strategy that leverages the dual advantages of pruning and fast algorithms, sufficiently reducing computational complexity while maintaining video compression efficiency. Secondly, a reconfigurable sparse computing core is designed to flexibly support sparse convolutions and deconvolutions based on the fast algorithm-based sparse strategy. Furthermore, a novel heterogeneous layer chaining dataflow is incorporated to reduce off-chip memory traffic stemming from extensive inter-frame motion and residual information. Thirdly, the overall architecture of NVCA is designed and synthesized in TSMC 28nm CMOS technology. Extensive experiments demonstrate that our design provides superior coding quality and up to 22.7x decoding speed improvements over other video compression designs. Meanwhile, our design achieves up to 2.2x improvements in energy efficiency compared to prior accelerators.
Abstract:Within the multimodal field, large vision-language models (LVLMs) have made significant progress due to their strong perception and reasoning capabilities in the visual and language systems. However, LVLMs are still plagued by the two critical issues of object hallucination and factual accuracy, which limit the practicality of LVLMs in different scenarios. Furthermore, previous evaluation methods focus more on the comprehension and reasoning of language content but lack a comprehensive evaluation of multimodal interactions, thereby resulting in potential limitations. To this end, we propose a novel KNVQA-Eval, which is devoted to knowledge-based VQA task evaluation to reflect the factuality of multimodal LVLMs. To ensure the robustness and scalability of the evaluation, we develop a new KNVQA dataset by incorporating human judgment and perception, aiming to evaluate the accuracy of standard answers relative to AI-generated answers in knowledge-based VQA. This work not only comprehensively evaluates the contextual information of LVLMs using reliable human annotations, but also further analyzes the fine-grained capabilities of current methods to reveal potential avenues for subsequent optimization of LVLMs-based estimators. Our proposed VQA-Eval and corresponding dataset KNVQA will facilitate the development of automatic evaluation tools with the advantages of low cost, privacy protection, and reproducibility. Our code will be released upon publication.
Abstract:Within the multimodal field, the key to integrating vision and language lies in establishing a good alignment strategy. Recently, benefiting from the success of self-supervised learning, significant progress has been made in multimodal semantic representation based on pre-trained models for vision and language. However, there is still room for improvement in visual semantic representation. The lack of spatial semantic coherence and vulnerability to noise makes it challenging for current pixel or patch-based methods to accurately extract complex scene boundaries. To this end, this paper develops superpixel as a comprehensive compact representation of learnable image data, which effectively reduces the number of visual primitives for subsequent processing by clustering perceptually similar pixels. To mine more precise topological relations, we propose a Multiscale Difference Graph Convolutional Network (MDGCN). It parses the entire image as a fine-to-coarse hierarchical structure of constituent visual patterns, and captures multiscale features by progressively merging adjacent superpixels as graph nodes. Moreover, we predict the differences between adjacent nodes through the graph structure, facilitating key information aggregation of graph nodes to reason actual semantic relations. Afterward, we design a multi-level fusion rule in a bottom-up manner to avoid understanding deviation by learning complementary spatial information at different regional scales. Our proposed method can be well applied to multiple downstream task learning. Extensive experiments demonstrate that our method is competitive with other state-of-the-art methods in visual reasoning. Our code will be released upon publication.
Abstract:With the success of self-supervised learning, multimodal foundation models have rapidly adapted a wide range of downstream tasks driven by vision and language (VL) pretraining. State-of-the-art methods achieve impressive performance by pre-training on large-scale datasets. However, bridging the semantic gap between the two modalities remains a nonnegligible challenge for VL tasks. In this work, we propose an efficient computation framework for multimodal alignment by introducing a novel visual semantic module to further improve the performance of the VL tasks. Specifically, we propose a flexible model, namely Artificial-Spiking Hierarchical Networks (ASH-Nets), which combines the complementary advantages of Artificial neural networks (ANNs) and Spiking neural networks (SNNs) to enrich visual semantic representations. In particular, a visual concrete encoder and a semantic abstract encoder are constructed to learn continuous and discrete latent variables to enhance the flexibility of semantic encoding. Considering the spatio-temporal properties of SNNs modeling, we introduce a contrastive learning method to optimize the inputs of similar samples. This can improve the computational efficiency of the hierarchical network, while the augmentation of hard samples is beneficial to the learning of visual representations. Furthermore, the Spiking to Text Uni-Alignment Learning (STUA) pre-training method is proposed, which only relies on text features to enhance the encoding ability of abstract semantics. We validate the performance on multiple well-established downstream VL tasks. Experiments show that the proposed ASH-Nets achieve competitive results.
Abstract:Teaching assistants have played essential roles in the long history of education. However, few MOOC platforms are providing human or virtual teaching assistants to support learning for massive online students due to the complexity of real-world online education scenarios and the lack of training data. In this paper, we present a virtual MOOC teaching assistant, LittleMu with minimum labeled training data, to provide question answering and chit-chat services. Consisting of two interactive modules of heterogeneous retrieval and language model prompting, LittleMu first integrates structural, semi- and unstructured knowledge sources to support accurate answers for a wide range of questions. Then, we design delicate demonstrations named "Chain of Teach" prompts to exploit the large-scale pre-trained model to handle complex uncollected questions. Except for question answering, we develop other educational services such as knowledge-grounded chit-chat. We test the system's performance via both offline evaluation and online deployment. Since May 2020, our LittleMu system has served over 80,000 users with over 300,000 queries from over 500 courses on XuetangX MOOC platform, which continuously contributes to a more convenient and fair education. Our code, services, and dataset will be available at https://github.com/THU-KEG/VTA.
Abstract:Visual question answering (VQA) has been intensively studied as a multimodal task that requires effort in bridging vision and language to infer answers correctly. Recent attempts have developed various attention-based modules for solving VQA tasks. However, the performance of model inference is largely bottlenecked by visual processing for semantics understanding. Most existing detection methods rely on bounding boxes, remaining a serious challenge for VQA models to understand the causal nexus of object semantics in images and correctly infer contextual information. To this end, we propose a finer model framework without bounding boxes in this work, termed Looking Out of Instance Semantics (LOIS) to tackle this important issue. LOIS enables more fine-grained feature descriptions to produce visual facts. Furthermore, to overcome the label ambiguity caused by instance masks, two types of relation attention modules: 1) intra-modality and 2) inter-modality, are devised to infer the correct answers from the different multi-view features. Specifically, we implement a mutual relation attention module to model sophisticated and deeper visual semantic relations between instance objects and background information. In addition, our proposed attention model can further analyze salient image regions by focusing on important word-related questions. Experimental results on four benchmark VQA datasets prove that our proposed method has favorable performance in improving visual reasoning capability.