Abstract:Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.
Abstract:Audio Event Recognition (AER) traditionally focuses on detecting and identifying audio events. Most existing AER models tend to detect all potential events without considering their varying significance across different contexts. This makes the AER results detected by existing models often have a large discrepancy with human auditory perception. Although this is a critical and significant issue, it has not been extensively studied by the Detection and Classification of Sound Scenes and Events (DCASE) community because solving it is time-consuming and labour-intensive. To address this issue, this paper introduces the concept of semantic importance in AER, focusing on exploring the differences between human perception and model inference. This paper constructs a Multi-Annotated Foreground Audio Event Recognition (MAFAR) dataset, which comprises audio recordings labelled by 10 professional annotators. Through labelling frequency and variance, the MAFAR dataset facilitates the quantification of semantic importance and analysis of human perception. By comparing human annotations with the predictions of ensemble pre-trained models, this paper uncovers a significant gap between human perception and model inference in both semantic identification and existence detection of audio events. Experimental results reveal that human perception tends to ignore subtle or trivial events in the event semantic identification, while model inference is easily affected by events with noises. Meanwhile, in event existence detection, models are usually more sensitive than humans.