Abstract:Distributed multichannel active noise control (DMCANC) offers effective noise reduction across large spatial areas by distributing the computational load of centralized control to multiple low-cost nodes. Conventional DMCANC methods, however, typically assume synchronous communication and require frequent data exchange, resulting in high communication overhead. To enhance efficiency and adaptability, this work proposes an asynchronous communication strategy where each node executes a weight-constrained filtered-x LMS (WCFxLMS) algorithm and independently requests communication only when its local noise reduction performance degrades. Upon request, other nodes transmit the weight difference between their local control filter and the center point in WCFxLMS, which are then integrated to update both the control filter and the center point. This design enables nodes to operate asynchronously while preserving cooperative behavior. Simulation results demonstrate that the proposed asynchronous communication DMCANC (ACDMCANC) system maintains effective noise reduction with significantly reduced communication load, offering improved scalability for heterogeneous networks.
Abstract:The Filtered-x Normalized Least Mean Square (FxNLMS) algorithm suffers from slow convergence and a risk of divergence, although it can achieve low steady-state errors after sufficient adaptation. In contrast, the Generative Fixed-Filter Active Noise Control (GFANC) method offers fast response speed, but its lack of adaptability may lead to large steady-state errors. This paper proposes a hybrid GFANC-FxNLMS algorithm to leverage the complementary advantages of both approaches. In the hybrid GFANC-FxNLMS algorithm, GFANC provides a frame-level control filter as an initialization for FxNLMS, while FxNLMS performs continuous adaptation at the sampling rate. Small variations in the GFANC-generated filter may repeatedly reinitialize FxNLMS, interrupting its adaptation process and destabilizing the system. An online clustering module is introduced to avoid unnecessary re-initializations and improve system stability. Simulation results show that the proposed algorithm achieves fast response, very low steady-state error, and high stability, requiring only one pre-trained broadband filter.
Abstract:Active noise control (ANC) must adapt quickly when the acoustic environment changes, yet early performance is largely dictated by initialization. We address this with a Model-Agnostic Meta-Learning (MAML) co-initialization that jointly sets the control filter and the secondary-path model for FxLMS-based ANC while keeping the runtime algorithm unchanged. The initializer is pre-trained on a small set of measured paths using short two-phase inner loops that mimic identification followed by residual-noise reduction, and is applied by simply setting the learned initial coefficients. In an online secondary path modeling FxLMS testbed, it yields lower early-stage error, shorter time-to-target, reduced auxiliary-noise energy, and faster recovery after path changes than a baseline without re-initialization. The method provides a simple fast start for feedforward ANC under environment changes, requiring a small set of paths to pre-train.
Abstract:Selective fixed-filter active noise control (SFANC) is a novel approach capable of mitigating noise with varying frequency characteristics. It offers faster response and greater computational efficiency compared to traditional adaptive algorithms. However, spatial factors, particularly the influence of the noise source location, are often overlooked. Some existing studies have explored the impact of the direction-of-arrival (DoA) of the noise source on ANC performance, but they are mostly limited to free-field conditions and do not consider the more complex indoor reverberant environments. To address this gap, this paper proposes a learning-based directional SFANC method that incorporates the DoA of the noise source in reverberant environments. In this framework, multiple reference signals are processed by a convolutional neural network (CNN) to estimate the azimuth and elevation angles of the noise source, as well as to identify the most appropriate control filter for effective noise cancellation. Compared to traditional adaptive algorithms, the proposed approach achieves superior noise reduction with shorter response times, even in the presence of reverberations.
Abstract:Direction-of-Arrival (DOA) estimation is critical in spatial audio and acoustic signal processing, with wide-ranging applications in real-world. Most existing DOA models are trained on synthetic data by convolving clean speech with room impulse responses (RIRs), which limits their generalizability due to constrained acoustic diversity. In this paper, we revisit DOA estimation using a recently introduced dataset constructed with the assistance of large language models (LLMs), which provides more realistic and diverse spatial audio scenes. We benchmark several representative neural-based DOA methods on this dataset and propose LightDOA, a lightweight DOA estimation model based on depthwise separable convolutions, specifically designed for mutil-channel input in varying environments. Experimental results show that LightDOA achieves satisfactory accuracy and robustness across various acoustic scenes while maintaining low computational complexity. This study not only highlights the potential of spatial audio synthesized with the assistance of LLMs in advancing robust and efficient DOA estimation research, but also highlights LightDOA as efficient solution for resource-constrained applications.
Abstract:Deep learning-based Sound Event Localization and Detection (SELD) systems degrade significantly on real-world, long-tailed datasets. Standard regression losses bias learning toward frequent classes, causing rare events to be systematically under-recognized. To address this challenge, we introduce MAGENTA (Magnitude And Geometry-ENhanced Training Approach), a unified loss function that counteracts this bias within a physically interpretable vector space. MAGENTA geometrically decomposes the regression error into radial and angular components, enabling targeted, rarity-aware penalties and strengthened directional modeling. Empirically, MAGENTA substantially improves SELD performance on imbalanced real-world data, providing a principled foundation for a new class of geometry-aware SELD objectives. Code is available at: https://github.com/itsjunwei/MAGENTA_ICASSP
Abstract:Wearable audio devices with active noise control (ANC) enhance listening comfort but often at the expense of situational awareness. However, this auditory isolation may mask crucial environmental cues, posing significant safety risks. To address this, we propose an environmental intelligence framework that combines Acoustic Scene Classification (ASC) with Sound Event Localization and Detection (SELD). Our system first employs a lightweight ASC model to infer the current environment. The scene prediction then dynamically conditions a SELD network, tuning its sensitivity to detect and localize sounds that are most salient to the current context. On simulated headphone data, the proposed ASC-conditioned SELD system demonstrates improved spatial intelligence over a conventional baseline. This work represents a crucial step towards creating intelligent hearables that can deliver crucial environmental information, fostering a safer and more context-aware listening experience.
Abstract:Compared to the conventional centralized multichannel active noise control (MCANC) algorithm, which requires substantial computational resources, decentralized approaches exhibit higher computational efficiency but typically result in inferior noise reduction performance. To enhance performance, distributed ANC methods have been introduced, enabling information exchange among ANC nodes; however, the resulting communication latency often compromises system stability. To overcome these limitations, we propose a self-boosted weight-constrained filtered-reference least mean square (SB-WCFxLMS) algorithm for the distributed MCANC system without internode communication. The WCFxLMS algorithm is specifically designed to mitigate divergence issues caused by the internode cross-talk effect. The self-boosted strategy lets each ANC node independently adapt its constraint parameters based on its local noise reduction performance, thus ensuring effective noise cancellation without the need for inter-node communication. With the assistance of this mechanism, this approach significantly reduces both computational complexity and communication overhead. Numerical simulations employing real acoustic paths and compressor noise validate the effectiveness and robustness of the proposed system. The results demonstrate that our proposed method achieves satisfactory noise cancellation performance with minimal resource requirements.
Abstract:This technical report presents our submission to Task 3 of the DCASE 2025 Challenge: Stereo Sound Event Localization and Detection (SELD) in Regular Video Content. We address the audio-only task in this report and introduce several key contributions. First, we design perceptually-motivated input features that improve event detection, sound source localization, and distance estimation. Second, we adapt augmentation strategies specifically for the intricacies of stereo audio, including channel swapping and time-frequency masking. We also incorporate the recently proposed FilterAugment technique that has yet to be explored for SELD work. Lastly, we apply a distance normalization approach during training to stabilize regression targets. Experiments on the stereo STARSS23 dataset demonstrate consistent performance gains across all SELD metrics. Code to replicate our work is available in this repository: https://github.com/itsjunwei/NTU_SNTL_Task3
Abstract:Open-domain Dialogue (OD) exhibits a one-to-many (o2m) property, whereby multiple appropriate responses exist for a single dialogue context. Despite prior research showing that modeling this property boosts response diversity, most modern LLM-based dialogue agents do not explicitly do so. In this work, we model the o2m property of OD in LLMs by decomposing OD generation into two key tasks: Multi-Response Generation (MRG) and Preference-based Selection (PS), which entail generating a set of n semantically and lexically diverse high-quality responses for a given dialogue context, followed by selecting a single response based on human preference, respectively. To facilitate MRG and PS, we introduce o2mDial, a dialogue corpus explicitly designed to capture the o2m property by featuring multiple plausible responses for each context. Leveraging o2mDial, we propose new in-context learning and instruction-tuning strategies, as well as novel evaluation metrics for MRG, alongside a model-based approach for PS. Empirical results demonstrate that applying the proposed two-stage framework to smaller LLMs for OD generation enhances overall response diversity while maintaining contextual coherence, improving response quality by up to 90%, bringing them closer to the performance of larger models.