Abstract:Searching for the Extreme Operating Conditions (EOCs) is one of the core problems of power system relay protection setting calculation. The current methods based on brute-force search, heuristic algorithms, and mathematical programming can hardly meet the requirements of today's power systems in terms of computation speed due to the drastic changes in operating conditions induced by renewables and power electronics. This paper proposes an EOC fast search method, named Graph Dueling Double Deep Q Network (Graph D3QN), which combines graph neural network and deep reinforcement learning to address this challenge. First, the EOC search problem is modeled as a Markov decision process, where the information of the underlying power system is extracted using graph neural networks, so that the EOC of the system can be found via deep reinforcement learning. Then, a two-stage Guided Learning and Free Exploration (GLFE) training framework is constructed to accelerate the convergence speed of reinforcement learning. Finally, the proposed Graph D3QN method is validated through case studies of searching maximum fault current for relay protection setting calculation on the IEEE 39-bus and 118-bus systems. The experimental results demonstrate that Graph D3QN can reduce the computation time by 10 to 1000 times while guaranteeing the accuracy of the selected EOCs.
Abstract:The digitization of engineering drawings is crucial for efficient reuse, distribution, and archiving. Existing computer vision approaches for digitizing engineering drawings typically assume the input drawings have high quality. However, in reality, engineering drawings are often blurred and distorted due to improper scanning, storage, and transmission, which may jeopardize the effectiveness of existing approaches. This paper focuses on restoring and recognizing low-quality engineering drawings, where an end-to-end framework is proposed to improve the quality of the drawings and identify the graphical symbols on them. The framework uses K-means clustering to classify different engineering drawing patches into simple and complex texture patches based on their gray level co-occurrence matrix statistics. Computer vision operations and a modified Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) model are then used to improve the quality of the two types of patches, respectively. A modified Faster Region-based Convolutional Neural Network (Faster R-CNN) model is used to recognize the quality-enhanced graphical symbols. Additionally, a multi-stage task-driven collaborative learning strategy is proposed to train the modified ESRGAN and Faster R-CNN models to improve the resolution of engineering drawings in the direction that facilitates graphical symbol recognition, rather than human visual perception. A synthetic data generation method is also proposed to construct quality-degraded samples for training the framework. Experiments on real-world electrical diagrams show that the proposed framework achieves an accuracy of 98.98% and a recall of 99.33%, demonstrating its superiority over previous approaches. Moreover, the framework is integrated into a widely-used power system software application to showcase its practicality.
Abstract:Since sparse unmixing has emerged as a promising approach to hyperspectral unmixing, some spatial-contextual information in the hyperspectral images has been exploited to improve the performance of the unmixing recently. The total variation (TV) has been widely used to promote the spatial homogeneity as well as the smoothness between adjacent pixels. However, the computation task for hyperspectral sparse unmixing with a TV regularization term is heavy. Besides, the convergences of the traditional sparse unmixing algorithms which are special cases of the primal alternating direction method of multipliers (pADMM) have not been explained in details. In this paper, we design an efficient and convergent dual symmetric Gauss-Seidel ADMM (sGS-ADMM) for hyperspectral sparse unmixing with a TV regularization term. We also present the global convergence and local linear convergence rate analysis for the traditional sparse unmixing algorithm and our algorithm. As demonstrated in numerical experiments, our algorithm can obviously improve the efficiency of the unmixing compared with the state-of-the-art algorithm. More importantly, we can obtain images with higher quality.