Abstract:Leveraging large language models (LLMs) has garnered increasing attention and introduced novel perspectives in time series classification. However, existing approaches often overlook the crucial dynamic temporal information inherent in time series data and face challenges in aligning this data with textual semantics. To address these limitations, we propose HiTime, a hierarchical multi-modal model that seamlessly integrates temporal information into LLMs for multivariate time series classification (MTSC). Our model employs a hierarchical feature encoder to capture diverse aspects of time series data through both data-specific and task-specific embeddings. To facilitate semantic space alignment between time series and text, we introduce a dual-view contrastive alignment module that bridges the gap between modalities. Additionally, we adopt a hybrid prompting strategy to fine-tune the pre-trained LLM in a parameter-efficient manner. By effectively incorporating dynamic temporal features and ensuring semantic alignment, HiTime enables LLMs to process continuous time series data and achieves state-of-the-art classification performance through text generation. Extensive experiments on benchmark datasets demonstrate that HiTime significantly enhances time series classification accuracy compared to most competitive baseline methods. Our findings highlight the potential of integrating temporal features into LLMs, paving the way for advanced time series analysis. The code is publicly available for further research and validation. Our codes are publicly available1.
Abstract:Learning recommender systems with multi-class optimization objective is a prevalent setting in recommendation. However, as observed user feedback often accounts for a tiny fraction of the entire item pool, the standard Softmax loss tends to ignore the difference between potential positive feedback and truly negative feedback. To address this challenge, we propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels, including target confidence and the latent interest distribution of non-target items. Futhermore, based on our carefully theoretical analysis, we design a decoupled loss function to flexibly adjust the importance of these two aspects. To maximize the performance of the proposed method, we additionally present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors. We conduct extensive experiments on various recommendation system models and public datasets, the results demonstrate the effectiveness and generality of the proposed method.
Abstract:Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation (FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models.
Abstract:For the advancements of time series classification, scrutinizing previous studies, most existing methods adopt a common learning-to-classify paradigm - a time series classifier model tries to learn the relation between sequence inputs and target label encoded by one-hot distribution. Although effective, this paradigm conceals two inherent limitations: (1) encoding target categories with one-hot distribution fails to reflect the comparability and similarity between labels, and (2) it is very difficult to learn transferable model across domains, which greatly hinder the development of universal serving paradigm. In this work, we propose InstructTime, a novel attempt to reshape time series classification as a learning-to-generate paradigm. Relying on the powerful generative capacity of the pre-trained language model, the core idea is to formulate the classification of time series as a multimodal understanding task, in which both task-specific instructions and raw time series are treated as multimodal inputs while the label information is represented by texts. To accomplish this goal, three distinct designs are developed in the InstructTime. Firstly, a time series discretization module is designed to convert continuous time series into a sequence of hard tokens to solve the inconsistency issue across modal inputs. To solve the modality representation gap issue, for one thing, we introduce an alignment projected layer before feeding the transformed token of time series into language models. For another, we highlight the necessity of auto-regressive pre-training across domains, which can facilitate the transferability of the language model and boost the generalization performance. Extensive experiments are conducted over benchmark datasets, whose results uncover the superior performance of InstructTime and the potential for a universal foundation model in time series classification.
Abstract:Recent efforts have been dedicated to enhancing time series forecasting accuracy by introducing advanced network architectures and self-supervised pretraining strategies. Nevertheless, existing approaches still exhibit two critical drawbacks. Firstly, these methods often rely on a single dataset for training, limiting the model's generalizability due to the restricted scale of the training data. Secondly, the one-step generation schema is widely followed, which necessitates a customized forecasting head and overlooks the temporal dependencies in the output series, and also leads to increased training costs under different horizon length settings. To address these issues, we propose a novel generative pretrained hierarchical transformer architecture for forecasting, named GPHT. There are two aspects of key designs in GPHT. On the one hand, we advocate for constructing a mixed dataset for pretraining our model, comprising various datasets from diverse data scenarios. This approach significantly expands the scale of training data, allowing our model to uncover commonalities in time series data and facilitating improved transfer to specific datasets. On the other hand, GPHT employs an auto-regressive forecasting approach under the channel-independent assumption, effectively modeling temporal dependencies in the output series. Importantly, no customized forecasting head is required, enabling a single model to forecast at arbitrary horizon settings. We conduct sufficient experiments on eight datasets with mainstream self-supervised pretraining models and supervised models. The results demonstrated that GPHT surpasses the baseline models across various fine-tuning and zero/few-shot learning settings in the traditional long-term forecasting task, providing support for verifying the feasibility of pretrained time series large models.
Abstract:Generating user-friendly explanations regarding why an item is recommended has become increasingly common, largely due to advances in language generation technology, which can enhance user trust and facilitate more informed decision-making when using online services. However, existing explainable recommendation systems focus on using small-size language models. It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have. Can we expect unprecedented results? In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework aimed at further boosting the explanation quality by employing LLMs. Unlike most existing LLM-based recommendation works, a key characteristic of LLMXRec is its emphasis on the close collaboration between previous recommender models and LLM-based explanation generators. Specifically, by adopting several key fine-tuning techniques, including parameter-efficient instructing tuning and personalized prompt techniques, controllable and fluent explanations can be well generated to achieve the goal of explanation recommendation. Most notably, we provide three different perspectives to evaluate the effectiveness of the explanations. Finally, we conduct extensive experiments over several benchmark recommender models and publicly available datasets. The experimental results not only yield positive results in terms of effectiveness and efficiency but also uncover some previously unknown outcomes. To facilitate further explorations in this area, the full code and detailed original results are open-sourced at https://github.com/GodFire66666/LLM_rec_explanation/.
Abstract:Deep learning-based algorithms, e.g., convolutional networks, have significantly facilitated multivariate time series classification (MTSC) task. Nevertheless, they suffer from the limitation in modeling long-range dependence due to the nature of convolution operations. Recent advancements have shown the potential of transformers to capture long-range dependence. However, it would incur severe issues, such as fixed scale representations, temporal-invariant and quadratic time complexity, with transformers directly applicable to the MTSC task because of the distinct properties of time series data. To tackle these issues, we propose FormerTime, an hierarchical representation model for improving the classification capacity for the MTSC task. In the proposed FormerTime, we employ a hierarchical network architecture to perform multi-scale feature maps. Besides, a novel transformer encoder is further designed, in which an efficient temporal reduction attention layer and a well-informed contextual positional encoding generating strategy are developed. To sum up, FormerTime exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism. Extensive experiments performed on $10$ publicly available datasets from UEA archive verify the superiorities of the FormerTime compared to previous competitive baselines.