Abstract:Large Language Models (LLMs) exhibit impressive problem-solving skills across many tasks, but they still underperform compared to humans in various downstream applications, such as text-to-SQL. On the BIRD benchmark leaderboard, human performance achieves an accuracy of 92.96\%, whereas the top-performing method reaches only 72.39\%. Notably, these state-of-the-art (SoTA) methods predominantly rely on in-context learning to simulate human-like reasoning. However, they overlook a critical human skill: continual learning. Inspired by the educational practice of maintaining mistake notebooks during our formative years, we propose LPE-SQL (Leveraging Prior Experience: An Expandable Auxiliary Knowledge Base for Text-to-SQL), a novel framework designed to augment LLMs by enabling continual learning without requiring parameter fine-tuning. LPE-SQL consists of four modules that \textbf{i)} retrieve relevant entries, \textbf{ii)} efficient sql generation, \textbf{iii)} generate the final result through a cross-consistency mechanism and \textbf{iv)} log successful and failed tasks along with their reasoning processes or reflection-generated tips. Importantly, the core module of LPE-SQL is the fourth one, while the other modules employ foundational methods, allowing LPE-SQL to be easily integrated with SoTA technologies to further enhance performance. Our experimental results demonstrate that this continual learning approach yields substantial performance gains, with the smaller Llama-3.1-70B model with surpassing the performance of the larger Llama-3.1-405B model using SoTA methods.
Abstract:Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation (FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models.