Abstract:Few-Shot Relation Extraction (FSRE), a subtask of Relation Extraction (RE) that utilizes limited training instances, appeals to more researchers in Natural Language Processing (NLP) due to its capability to extract textual information in extremely low-resource scenarios. The primary methodologies employed for FSRE have been fine-tuning or prompt tuning techniques based on Pre-trained Language Models (PLMs). Recently, the emergence of Large Language Models (LLMs) has prompted numerous researchers to explore FSRE through In-Context Learning (ICL). However, there are substantial limitations associated with methods based on either traditional RE models or LLMs. Traditional RE models are hampered by a lack of necessary prior knowledge, while LLMs fall short in their task-specific capabilities for RE. To address these shortcomings, we propose a Dual-System Augmented Relation Extractor (DSARE), which synergistically combines traditional RE models with LLMs. Specifically, DSARE innovatively injects the prior knowledge of LLMs into traditional RE models, and conversely enhances LLMs' task-specific aptitude for RE through relation extraction augmentation. Moreover, an Integrated Prediction module is employed to jointly consider these two respective predictions and derive the final results. Extensive experiments demonstrate the efficacy of our proposed method.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as a pivotal innovation in natural language processing, enhancing generative models by incorporating external information retrieval. Evaluating RAG systems, however, poses distinct challenges due to their hybrid structure and reliance on dynamic knowledge sources. We consequently enhanced an extensive survey and proposed an analysis framework for benchmarks of RAG systems, RAGR (Retrieval, Generation, Additional Requirement), designed to systematically analyze RAG benchmarks by focusing on measurable outputs and established truths. Specifically, we scrutinize and contrast multiple quantifiable metrics of the Retrieval and Generation component, such as relevance, accuracy, and faithfulness, of the internal links within the current RAG evaluation methods, covering the possible output and ground truth pairs. We also analyze the integration of additional requirements of different works, discuss the limitations of current benchmarks, and propose potential directions for further research to address these shortcomings and advance the field of RAG evaluation. In conclusion, this paper collates the challenges associated with RAG evaluation. It presents a thorough analysis and examination of existing methodologies for RAG benchmark design based on the proposed RGAR framework.