Abstract:Mathematical reasoning is a crucial capability for Large Language Models (LLMs), yet generating detailed and accurate reasoning traces remains a significant challenge. This paper introduces a novel approach to produce high-quality reasoning traces for LLM fine-tuning using online learning \textbf{Flows}. Our method employs an incremental output production Flow, where component LLMs collaboratively construct solutions through iterative communication. We train the Flow using online Direct Preference Optimization (DPO) learning with rollouts, generating DPO pairs for each training example and updating models in real-time. We directly compare the quality of reasoning traces generated by our method with those produced through direct model inference, demonstrating the effectiveness of our approach in improving LLM performance in mathematical reasoning tasks.
Abstract:Recent advancements in Large Language Models (LLMs) have empowered LLM agents to autonomously collect world information, over which to conduct reasoning to solve complex problems. Given this capability, increasing interests have been put into employing LLM agents for predicting international events, which can influence decision-making and shape policy development on an international scale. Despite such a growing interest, there is a lack of a rigorous benchmark of LLM agents' forecasting capability and reliability. To address this gap, we introduce MIRAI, a novel benchmark designed to systematically evaluate LLM agents as temporal forecasters in the context of international events. Our benchmark features an agentic environment with tools for accessing an extensive database of historical, structured events and textual news articles. We refine the GDELT event database with careful cleaning and parsing to curate a series of relational prediction tasks with varying forecasting horizons, assessing LLM agents' abilities from short-term to long-term forecasting. We further implement APIs to enable LLM agents to utilize different tools via a code-based interface. In summary, MIRAI comprehensively evaluates the agents' capabilities in three dimensions: 1) autonomously source and integrate critical information from large global databases; 2) write codes using domain-specific APIs and libraries for tool-use; and 3) jointly reason over historical knowledge from diverse formats and time to accurately predict future events. Through comprehensive benchmarking, we aim to establish a reliable framework for assessing the capabilities of LLM agents in forecasting international events, thereby contributing to the development of more accurate and trustworthy models for international relation analysis.
Abstract:Large vision language models (LVLMs) integrate large language models (LLMs) with pre-trained vision encoders, thereby activating the perception capability of the model to understand image inputs for different queries and conduct subsequent reasoning. Improving this capability requires high-quality vision-language data, which is costly and labor-intensive to acquire. Self-training approaches have been effective in single-modal settings to alleviate the need for labeled data by leveraging model's own generation. However, effective self-training remains a challenge regarding the unique visual perception and reasoning capability of LVLMs. To address this, we introduce Self-Training on Image Comprehension (STIC), which emphasizes a self-training approach specifically for image comprehension. First, the model self-constructs a preference dataset for image descriptions using unlabeled images. Preferred responses are generated through a step-by-step prompt, while dis-preferred responses are generated from either corrupted images or misleading prompts. To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data and append its self-generated image descriptions to the prompts. We validate the effectiveness of STIC across seven different benchmarks, demonstrating substantial performance gains of 4.0% on average while using 70% less supervised fine-tuning data than the current method. Further studies investigate various components of STIC and highlight its potential to leverage vast quantities of unlabeled images for self-training. Code and data are made publicly available.
Abstract:The advancement of Large Vision-Language Models (LVLMs) has increasingly highlighted the critical issue of their tendency to hallucinate non-existing objects in the images. To address this issue, previous works focused on using specially curated datasets or powerful LLMs (e.g., GPT-3.5) to rectify the outputs of LVLMs. However, these approaches require either expensive training/fine-tuning or API access to advanced LLMs to correct the model's output post-generation. In this paper, we tackle this challenge by introducing a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE), which is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process. Specifically, MARINE enriches the visual context of LVLMs by integrating existing open-source vision models, and employs classifier-free guidance to incorporate the additional object grounding features to improve the precision of LVLMs' generations. Through comprehensive evaluations across $6$ popular LVLMs with diverse evaluation metrics, we demonstrate the effectiveness of MARINE, which even outperforms existing fine-tuning-based methods. Remarkably, it not only reduces hallucinations but also improves the detailedness of LVLMs' generations, as assessed by GPT-4V.
Abstract:Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM's performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
Abstract:Accelerated stochastic gradient descent (ASGD) is a workhorse in deep learning and often achieves better generalization performance than SGD. However, existing optimization theory can only explain the faster convergence of ASGD, but cannot explain its better generalization. In this paper, we study the generalization of ASGD for overparameterized linear regression, which is possibly the simplest setting of learning with overparameterization. We establish an instance-dependent excess risk bound for ASGD within each eigen-subspace of the data covariance matrix. Our analysis shows that (i) ASGD outperforms SGD in the subspace of small eigenvalues, exhibiting a faster rate of exponential decay for bias error, while in the subspace of large eigenvalues, its bias error decays slower than SGD; and (ii) the variance error of ASGD is always larger than that of SGD. Our result suggests that ASGD can outperform SGD when the difference between the initialization and the true weight vector is mostly confined to the subspace of small eigenvalues. Additionally, when our analysis is specialized to linear regression in the strongly convex setting, it yields a tighter bound for bias error than the best-known result.
Abstract:Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.
Abstract:Multi-modal learning has become increasingly popular due to its ability to leverage information from different data sources (e.g., text and images) to improve the model performance. Recently, CLIP has emerged as an effective approach that employs vision-language contrastive pretraining to learn joint image and text representations and exhibits remarkable performance in zero-shot learning and text-guided natural image generation. Despite the huge practical success of CLIP, its theoretical understanding remains elusive. In this paper, we formally study transferrable representation learning underlying CLIP and demonstrate how features from different modalities get aligned. We also analyze its zero-shot transfer performance on the downstream tasks. Inspired by our analysis, we propose a new CLIP-type approach, which achieves better performance than CLIP and other state-of-the-art methods on benchmark datasets.
Abstract:While deep learning models have shown remarkable performance in various tasks, they are susceptible to learning non-generalizable spurious features rather than the core features that are genuinely correlated to the true label. In this paper, beyond existing analyses of linear models, we theoretically examine the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features. Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process. In light of this, we propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance. PDE begins with a group-balanced subset of training data and progressively expands it to facilitate the learning of the core features. Experiments on synthetic and real-world benchmark datasets confirm the superior performance of our method on models such as ResNets and Transformers. On average, our method achieves a 2.8% improvement in worst-group accuracy compared with the state-of-the-art method, while enjoying up to 10x faster training efficiency.
Abstract:The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has achieved great success in deep learning. However, the understanding of such architecture remains elusive. In this paper, we formally study how the MoE layer improves the performance of neural network learning and why the mixture model will not collapse into a single model. Our empirical results suggest that the cluster structure of the underlying problem and the non-linearity of the expert are pivotal to the success of MoE. To further understand this, we consider a challenging classification problem with intrinsic cluster structures, which is hard to learn using a single expert. Yet with the MoE layer, by choosing the experts as two-layer nonlinear convolutional neural networks (CNNs), we show that the problem can be learned successfully. Furthermore, our theory shows that the router can learn the cluster-center features, which helps divide the input complex problem into simpler linear classification sub-problems that individual experts can conquer. To our knowledge, this is the first result towards formally understanding the mechanism of the MoE layer for deep learning.