Abstract:In this paper, we study multi-target domain adaptation of scene understanding models. While previous methods achieved commendable results through inter-domain consistency losses, they often assumed unrealistic simultaneous access to images from all target domains, overlooking constraints such as data transfer bandwidth limitations and data privacy concerns. Given these challenges, we pose the question: How to merge models adapted independently on distinct domains while bypassing the need for direct access to training data? Our solution to this problem involves two components, merging model parameters and merging model buffers (i.e., normalization layer statistics). For merging model parameters, empirical analyses of mode connectivity surprisingly reveal that linear merging suffices when employing the same pretrained backbone weights for adapting separate models. For merging model buffers, we model the real-world distribution with a Gaussian prior and estimate new statistics from the buffers of separately trained models. Our method is simple yet effective, achieving comparable performance with data combination training baselines, while eliminating the need for accessing training data. Project page: https://air-discover.github.io/ModelMerging
Abstract:Semantic image synthesis (SIS) shows good promises for sensor simulation. However, current best practices in this field, based on GANs, have not yet reached the desired level of quality. As latent diffusion models make significant strides in image generation, we are prompted to evaluate ControlNet, a notable method for its dense control capabilities. Our investigation uncovered two primary issues with its results: the presence of weird sub-structures within large semantic areas and the misalignment of content with the semantic mask. Through empirical study, we pinpointed the cause of these problems as a mismatch between the noised training data distribution and the standard normal prior applied at the inference stage. To address this challenge, we developed specific noise priors for SIS, encompassing spatial, categorical, and a novel spatial-categorical joint prior for inference. This approach, which we have named SCP-Diff, has yielded exceptional results, achieving an FID of 10.53 on Cityscapes and 12.66 on ADE20K.The code and models can be accessed via the project page.
Abstract:In the past several years, road anomaly segmentation is actively explored in the academia and drawing growing attention in the industry. The rationale behind is straightforward: if the autonomous car can brake before hitting an anomalous object, safety is promoted. However, this rationale naturally calls for a temporally informed setting while existing methods and benchmarks are designed in an unrealistic frame-wise manner. To bridge this gap, we contribute the first video anomaly segmentation dataset for autonomous driving. Since placing various anomalous objects on busy roads and annotating them in every frame are dangerous and expensive, we resort to synthetic data. To improve the relevance of this synthetic dataset to real-world applications, we train a generative adversarial network conditioned on rendering G-buffers for photorealism enhancement. Our dataset consists of 120,000 high-resolution frames at a 60 FPS framerate, as recorded in 7 different towns. As an initial benchmarking, we provide baselines using latest supervised and unsupervised road anomaly segmentation methods. Apart from conventional ones, we focus on two new metrics: temporal consistency and latencyaware streaming accuracy. We believe the latter is valuable as it measures whether an anomaly segmentation algorithm can truly prevent a car from crashing in a temporally informed setting.