Abstract:Robot-assisted minimally invasive surgery (RAMIS) provides substantial benefits over traditional open and laparoscopic methods. However, a significant limitation of RAMIS is the surgeon's inability to palpate tissues, a crucial technique for examining tissue properties and detecting abnormalities, restricting the widespread adoption of RAMIS. To overcome this obstacle, we introduce MiniTac, a novel vision-based tactile sensor with an ultra-compact cross-sectional diameter of 8 mm, designed for seamless integration into mainstream RAMIS devices, particularly the Da Vinci surgical systems. MiniTac features a novel mechanoresponsive photonic elastomer membrane that changes color distribution under varying contact pressures. This color change is captured by an embedded miniature camera, allowing MiniTac to detect tumors both on the tissue surface and in deeper layers typically obscured from endoscopic view. MiniTac's efficacy has been rigorously tested on both phantoms and ex-vivo tissues. By leveraging advanced mechanoresponsive photonic materials, MiniTac represents a significant advancement in integrating tactile sensing into RAMIS, potentially expanding its applicability to a wider array of clinical scenarios that currently rely on traditional surgical approaches.
Abstract:In the past several years, road anomaly segmentation is actively explored in the academia and drawing growing attention in the industry. The rationale behind is straightforward: if the autonomous car can brake before hitting an anomalous object, safety is promoted. However, this rationale naturally calls for a temporally informed setting while existing methods and benchmarks are designed in an unrealistic frame-wise manner. To bridge this gap, we contribute the first video anomaly segmentation dataset for autonomous driving. Since placing various anomalous objects on busy roads and annotating them in every frame are dangerous and expensive, we resort to synthetic data. To improve the relevance of this synthetic dataset to real-world applications, we train a generative adversarial network conditioned on rendering G-buffers for photorealism enhancement. Our dataset consists of 120,000 high-resolution frames at a 60 FPS framerate, as recorded in 7 different towns. As an initial benchmarking, we provide baselines using latest supervised and unsupervised road anomaly segmentation methods. Apart from conventional ones, we focus on two new metrics: temporal consistency and latencyaware streaming accuracy. We believe the latter is valuable as it measures whether an anomaly segmentation algorithm can truly prevent a car from crashing in a temporally informed setting.
Abstract:With significant annotation savings, point supervision has been proven effective for numerous 2D and 3D scene understanding problems. This success is primarily attributed to the structured output space; i.e., samples with high spatial affinity tend to share the same labels. Sharing this spirit, we study affordance segmentation with point supervision, wherein the setting inherits an unexplored dual affinity-spatial affinity and label affinity. By label affinity, we refer to affordance segmentation as a multi-label prediction problem: A plate can be both holdable and containable. By spatial affinity, we refer to a universal prior that nearby pixels with similar visual features should share the same point annotation. To tackle label affinity, we devise a dense prediction network that enhances label relations by effectively densifying labels in a new domain (i.e., label co-occurrence). To address spatial affinity, we exploit a Transformer backbone for global patch interaction and a regularization loss. In experiments, we benchmark our method on the challenging CAD120 dataset, showing significant performance gains over prior methods.