Abstract:In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Code will soon be available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
Abstract:Fairness is an important topic for medical image analysis, driven by the challenge of unbalanced training data among diverse target groups and the societal demand for equitable medical quality. In response to this issue, our research adopts a data-driven strategy-enhancing data balance by integrating synthetic images. However, in terms of generating synthetic images, previous works either lack paired labels or fail to precisely control the boundaries of synthetic images to be aligned with those labels. To address this, we formulate the problem in a joint optimization manner, in which three networks are optimized towards the goal of empirical risk minimization and fairness maximization. On the implementation side, our solution features an innovative Point-Image Diffusion architecture, which leverages 3D point clouds for improved control over mask boundaries through a point-mask-image synthesis pipeline. This method outperforms significantly existing techniques in synthesizing scanning laser ophthalmoscopy (SLO) fundus images. By combining synthetic data with real data during the training phase using a proposed Equal Scale approach, our model achieves superior fairness segmentation performance compared to the state-of-the-art fairness learning models. Code is available at https://github.com/wenyi-li/FairDiff.
Abstract:Infrared small target detection plays an important role in the remote sensing fields. Therefore, many detection algorithms have been proposed, in which the infrared patch-tensor (IPT) model has become a mainstream tool due to its excellent performance. However, most IPT-based methods face great challenges, such as inaccurate measure of the tensor low-rankness and poor robustness to complex scenes, which will leadto poor detection performance. In order to solve these problems, this paper proposes a novel double-weighted multi-granularity infrared patch tensor (DWMGIPT) model. First, to capture different granularity information of tensor from multiple modes, a multi-granularity infrared patch tensor (MGIPT) model is constructed by collecting nonoverlapping patches and tensor augmentation based on the tensor train (TT) decomposition. Second, to explore the latent structure of tensor more efficiently, we utilize the auto-weighted mechanism to balance the importance of information at different granularity. Then, the steering kernel (SK) is employed to extract local structure prior, which suppresses background interference such as strong edges and noise. Finally, an efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) is presented to solve the model. Extensive experiments in various challenging scenes show that the proposed algorithm is robust to noise and different scenes. Compared with the other eight state-of-the-art methods, different evaluation metrics demonstrate that our method achieves better detection performance in various complex scenes.