Abstract:To reduce the human intervention in the preference measure process,this article proposes a preference collaborative measure framework based on an updated belief system,which is also capable of improving the accuracy and efficiency of preferen-ce measure algorithms.Firstly,the distance of rules and the average internal distance of rulesets are proposed for specifying the relationship between the rules.For discovering the most representative preferences that are common in all users,namely common preference,a algorithm based on average internal distance of ruleset,PRA algorithm,is proposed,which aims to finish the discoveryprocess with minimum information loss rate.Furthermore,the concept of Common belief is proposed to update the belief system,and the common preferences are the evidences of updated belief system.Then,under the belief system,the proposed belief degree and deviation degree are used to determine whether a rule confirms the belief system or not and classify the preference rules into two kinds(generalized or personalized),and eventually filters out Top-K interesting rules relying on belief degree and deviation degree.Based on above,a scalable interestingness calculation framework that can apply various formulas is proposed for accurately calculating interestingness in different conditions.At last,IMCos algorithm and IMCov algorithm are proposed as exemplars to verify the accuracy and efficiency of the framework by using weighted cosine similarity and correlation coefficients as belief degree.In experiments,the proposed algorithms are compared to two state-of-the-art algorithms and the results show that IMCos and IMCov outperform than the other two in most aspects.
Abstract:Infrared small target detection plays an important role in the remote sensing fields. Therefore, many detection algorithms have been proposed, in which the infrared patch-tensor (IPT) model has become a mainstream tool due to its excellent performance. However, most IPT-based methods face great challenges, such as inaccurate measure of the tensor low-rankness and poor robustness to complex scenes, which will leadto poor detection performance. In order to solve these problems, this paper proposes a novel double-weighted multi-granularity infrared patch tensor (DWMGIPT) model. First, to capture different granularity information of tensor from multiple modes, a multi-granularity infrared patch tensor (MGIPT) model is constructed by collecting nonoverlapping patches and tensor augmentation based on the tensor train (TT) decomposition. Second, to explore the latent structure of tensor more efficiently, we utilize the auto-weighted mechanism to balance the importance of information at different granularity. Then, the steering kernel (SK) is employed to extract local structure prior, which suppresses background interference such as strong edges and noise. Finally, an efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) is presented to solve the model. Extensive experiments in various challenging scenes show that the proposed algorithm is robust to noise and different scenes. Compared with the other eight state-of-the-art methods, different evaluation metrics demonstrate that our method achieves better detection performance in various complex scenes.
Abstract:Active learning improves the performance of machine learning methods by judiciously selecting a limited number of unlabeled data points to query for labels, with the aim of maximally improving the underlying classifier's performance. Recent gains have been made using sequential active learning for synthetic aperture radar (SAR) data arXiv:2204.00005. In each iteration, sequential active learning selects a query set of size one while batch active learning selects a query set of multiple datapoints. While batch active learning methods exhibit greater efficiency, the challenge lies in maintaining model accuracy relative to sequential active learning methods. We developed a novel, two-part approach for batch active learning: Dijkstra's Annulus Core-Set (DAC) for core-set generation and LocalMax for batch sampling. The batch active learning process that combines DAC and LocalMax achieves nearly identical accuracy as sequential active learning but is more efficient, proportional to the batch size. As an application, a pipeline is built based on transfer learning feature embedding, graph learning, DAC, and LocalMax to classify the FUSAR-Ship and OpenSARShip datasets. Our pipeline outperforms the state-of-the-art CNN-based methods.
Abstract:Tensor completion is an important problem in modern data analysis. In this work, we investigate a specific sampling strategy, referred to as tubal sampling. We propose two novel non-convex tensor completion frameworks that are easy to implement, named tensor $L_1$-$L_2$ (TL12) and tensor completion via CUR (TCCUR). We test the efficiency of both methods on synthetic data and a color image inpainting problem. Empirical results reveal a trade-off between the accuracy and time efficiency of these two methods in a low sampling ratio. Each of them outperforms some classical completion methods in at least one aspect.