Infrared small target detection plays an important role in the remote sensing fields. Therefore, many detection algorithms have been proposed, in which the infrared patch-tensor (IPT) model has become a mainstream tool due to its excellent performance. However, most IPT-based methods face great challenges, such as inaccurate measure of the tensor low-rankness and poor robustness to complex scenes, which will leadto poor detection performance. In order to solve these problems, this paper proposes a novel double-weighted multi-granularity infrared patch tensor (DWMGIPT) model. First, to capture different granularity information of tensor from multiple modes, a multi-granularity infrared patch tensor (MGIPT) model is constructed by collecting nonoverlapping patches and tensor augmentation based on the tensor train (TT) decomposition. Second, to explore the latent structure of tensor more efficiently, we utilize the auto-weighted mechanism to balance the importance of information at different granularity. Then, the steering kernel (SK) is employed to extract local structure prior, which suppresses background interference such as strong edges and noise. Finally, an efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) is presented to solve the model. Extensive experiments in various challenging scenes show that the proposed algorithm is robust to noise and different scenes. Compared with the other eight state-of-the-art methods, different evaluation metrics demonstrate that our method achieves better detection performance in various complex scenes.