Abstract:Policy constraint methods in offline reinforcement learning employ additional regularization techniques to constrain the discrepancy between the learned policy and the offline dataset. However, these methods tend to result in overly conservative policies that resemble the behavior policy, thus limiting their performance. We investigate this limitation and attribute it to the static nature of traditional constraints. In this paper, we propose a novel dynamic policy constraint that restricts the learned policy on the samples generated by the exponential moving average of previously learned policies. By integrating this self-constraint mechanism into off-policy methods, our method facilitates the learning of non-conservative policies while avoiding policy collapse in the offline setting. Theoretical results show that our approach results in a nearly monotonically improved reference policy. Extensive experiments on the D4RL MuJoCo domain demonstrate that our proposed method achieves state-of-the-art performance among the policy constraint methods.
Abstract:Learning a skill generally relies on both practical experience by doer and insightful high-level guidance by instructor. Will this strategy also work well for solving complex non-convex optimization problems? Here, a common gradient-based optimizer acts like a disciplined doer, making locally optimal update at each step. Recent methods utilize large language models (LLMs) to optimize solutions for concrete problems by inferring from natural language instructions, akin to a high-level instructor. In this paper, we show that these two optimizers are complementary to each other, suggesting a collaborative optimization approach. The gradient-based optimizer and LLM-based optimizer are combined in an interleaved manner. We instruct LLMs using task descriptions and timely optimization trajectories recorded during gradient-based optimization. Inferred results from LLMs are used as restarting points for the next stage of gradient optimization. By leveraging both the locally rigorous gradient-based optimizer and the high-level deductive LLM-based optimizer, our combined optimization method consistently yields improvements over competitive baseline prompt tuning methods. Our results demonstrate the synergistic effect of conventional gradient-based optimization and the inference ability of LLMs. The code is released at https://github.com/guozix/LLM-catalyst.
Abstract:Parameter-efficient fine-tuning (PEFT) methods have provided an effective way for adapting large vision-language models to specific tasks or scenarios. Typically, they learn a very small scale of parameters for pre-trained models in a white-box formulation, which assumes model architectures to be known and parameters to be accessible. However, large models are often not open-source due to considerations of preventing abuse or commercial factors, hence posing a barrier to the deployment of white-box PEFT methods. To alleviate the dependence on model accessibility, we introduce collaborative black-box tuning (CBBT) for both textual prompt optimization and output feature adaptation for black-box models. Specifically, considering that the backpropagation gradients are blocked, we approximate the gradients of textual prompts by analyzing the predictions with perturbed prompts. Secondly, a lightweight adapter is deployed over the output feature of the inaccessible model, further facilitating the model adaptation process. Empowered with these designs, our CBBT is extensively evaluated on eleven downstream benchmarks and achieves remarkable improvements compared to existing black-box VL adaptation methods. Code is released at https://github.com/guozix/cbbt.
Abstract:Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., images) is by default prerequisite for learning prompts in existing methods. In this work, we advocate that the effectiveness of image-text contrastive learning in aligning the two modalities (for training CLIP) further makes it feasible to treat texts as images for prompt tuning and introduce TaI prompting. In contrast to the visual data, text descriptions are easy to collect, and their class labels can be directly derived. Particularly, we apply TaI prompting to multi-label image recognition, where sentences in the wild serve as alternatives to images for prompt tuning. Moreover, with TaI, double-grained prompt tuning (TaI-DPT) is further presented to extract both coarse-grained and fine-grained embeddings for enhancing the multi-label recognition performance. Experimental results show that our proposed TaI-DPT outperforms zero-shot CLIP by a large margin on multiple benchmarks, e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can be combined with existing methods of prompting from images to improve recognition performance further. Code is released at https://github.com/guozix/TaI-DPT.