Abstract:Policy constraint methods in offline reinforcement learning employ additional regularization techniques to constrain the discrepancy between the learned policy and the offline dataset. However, these methods tend to result in overly conservative policies that resemble the behavior policy, thus limiting their performance. We investigate this limitation and attribute it to the static nature of traditional constraints. In this paper, we propose a novel dynamic policy constraint that restricts the learned policy on the samples generated by the exponential moving average of previously learned policies. By integrating this self-constraint mechanism into off-policy methods, our method facilitates the learning of non-conservative policies while avoiding policy collapse in the offline setting. Theoretical results show that our approach results in a nearly monotonically improved reference policy. Extensive experiments on the D4RL MuJoCo domain demonstrate that our proposed method achieves state-of-the-art performance among the policy constraint methods.
Abstract:LiDAR-based sensors employing optical spectrum signals play a vital role in providing significant information about the target objects in autonomous driving vehicle systems. However, the presence of fog in the atmosphere severely degrades the overall system's performance. This manuscript analyzes the role of fog particle size distributions in 3D object detection under adverse weather conditions. We utilise Mie theory and meteorological optical range (MOR) to calculate the attenuation and backscattering coefficient values for point cloud generation and analyze the overall system's accuracy in Car, Cyclist, and Pedestrian case scenarios under easy, medium and hard detection difficulties. Gamma and Junge (Power-Law) distributions are employed to mathematically model the fog particle size distribution under strong and moderate advection fog environments. Subsequently, we modified the KITTI dataset based on the backscattering coefficient values and trained it on the PV-RCNN++ deep neural network model for Car, Cyclist, and Pedestrian cases under different detection difficulties. The result analysis shows a significant variation in the system's accuracy concerning the changes in target object dimensionality, the nature of the fog environment and increasing detection difficulties, with the Car exhibiting the highest accuracy of around 99% and the Pedestrian showing the lowest accuracy of around 73%.
Abstract:Majority of research in learning based methods has been towards designing and training networks for specific tasks. However, many of the learning based tasks, across modalities, share commonalities and could be potentially tackled in a joint framework. We present an approach in such direction, to learn multiple tasks, in multiple modalities, with a unified architecture. The proposed network is composed of task specific encoders, a common trunk in the middle, followed by task specific prediction heads. We first pre-train it by self-supervised masked training, followed by sequential training for the different tasks. We train the network on all major modalities, e.g.\ visual, audio, text and 3D, and report results on $22$ diverse and challenging public benchmarks. We demonstrate empirically that, using a joint network to train across modalities leads to meaningful information sharing and this allows us to achieve state-of-the-art results on most of the benchmarks. We also show generalization of the trained network on cross-modal tasks as well as unseen datasets and tasks.
Abstract:We introduce a novel graph-based framework for alleviating key challenges in distantly-supervised relation extraction and demonstrate its effectiveness in the challenging and important domain of biomedical data. Specifically, we propose a graph view of sentence bags referring to an entity pair, which enables message-passing based aggregation of information related to the entity pair over the sentence bag. The proposed framework alleviates the common problem of noisy labeling in distantly supervised relation extraction and also effectively incorporates inter-dependencies between sentences within a bag. Extensive experiments on two large-scale biomedical relation datasets and the widely utilized NYT dataset demonstrate that our proposed framework significantly outperforms the state-of-the-art methods for biomedical distant supervision relation extraction while also providing excellent performance for relation extraction in the general text mining domain.
Abstract:We investigate data-driven texture modeling via analysis and synthesis with generative adversarial networks. For network training and testing, we have compiled a diverse set of spatially homogeneous textures, ranging from stochastic to regular. We adopt StyleGAN3 for synthesis and demonstrate that it produces diverse textures beyond those represented in the training data. For texture analysis, we propose GAN inversion using a novel latent domain reconstruction consistency criterion for synthesized textures, and iterative refinement with Gramian loss for real textures. We propose perceptual procedures for evaluating network capabilities, exploring the global and local behavior of latent space trajectories, and comparing with existing texture analysis-synthesis techniques.
Abstract:Online education platforms are powered by various NLP pipelines, which utilize models like BERT to aid in content curation. Since the inception of the pre-trained language models like BERT, there have also been many efforts toward adapting these pre-trained models to specific domains. However, there has not been a model specifically adapted for the education domain (particularly K-12) across subjects to the best of our knowledge. In this work, we propose to train a language model on a corpus of data curated by us across multiple subjects from various sources for K-12 education. We also evaluate our model, K12-BERT, on downstream tasks like hierarchical taxonomy tagging.
Abstract:We present a new approach for universal texture synthesis by incorporating a multi-scale texton broadcasting module in the StyleGAN-2 framework. The texton broadcasting module introduces an inductive bias, enabling generation of broader range of textures, from those with regular structures to completely stochastic ones. To train and evaluate the proposed approach, we construct a comprehensive high-resolution dataset that captures the diversity of natural textures as well as stochastic variations within each perceptually uniform texture. Experimental results demonstrate that the proposed approach yields significantly better quality textures than the state of the art. The ultimate goal of this work is a comprehensive understanding of texture space.
Abstract:Binaural audio gives the listener an immersive experience and can enhance augmented and virtual reality. However, recording binaural audio requires specialized setup with a dummy human head having microphones in left and right ears. Such a recording setup is difficult to build and setup, therefore mono audio has become the preferred choice in common devices. To obtain the same impact as binaural audio, recent efforts have been directed towards lifting mono audio to binaural audio conditioned on the visual input from the scene. Such approaches have not used an important cue for the task: the distance of different sound producing objects from the microphones. In this work, we argue that depth map of the scene can act as a proxy for inducing distance information of different objects in the scene, for the task of audio binauralization. We propose a novel encoder-decoder architecture with a hierarchical attention mechanism to encode image, depth and audio feature jointly. We design the network on top of state-of-the-art transformer networks for image and depth representation. We show empirically that the proposed method outperforms state-of-the-art methods comfortably for two challenging public datasets FAIR-Play and MUSIC-Stereo. We also demonstrate with qualitative results that the method is able to focus on the right information required for the task. The project details are available at \url{https://krantiparida.github.io/projects/bmonobinaural.html}
Abstract:Binaural audio gives the listener the feeling of being in the recording place and enhances the immersive experience if coupled with AR/VR. But the problem with binaural audio recording is that it requires a specialized setup which is not possible to fabricate within handheld devices as compared to traditional mono audio that can be recorded with a single microphone. In order to overcome this drawback, prior works have tried to uplift the mono recorded audio to binaural audio as a post processing step conditioning on the visual input. But all the prior approaches missed other most important information required for the task, i.e. distance of different sound producing objects from the recording setup. In this work, we argue that the depth map of the scene can act as a proxy for encoding distance information of objects in the scene and show that adding depth features along with image features improves the performance both qualitatively and quantitatively. We propose a novel encoder-decoder architecture, where we use a hierarchical attention mechanism to encode the image and depth feature extracted from individual transformer backbone, with audio features at each layer of the decoder.
Abstract:Label noise and long-tailed distributions are two major challenges in distantly supervised relation extraction. Recent studies have shown great progress on denoising, but pay little attention to the problem of long-tailed relations. In this paper, we introduce constraint graphs to model the dependencies between relation labels. On top of that, we further propose a novel constraint graph-based relation extraction framework(CGRE) to handle the two challenges simultaneously. CGRE employs graph convolution networks (GCNs) to propagate information from data-rich relation nodes to data-poor relation nodes, and thus boosts the representation learning of long-tailed relations. To further improve the noise immunity, a constraint-aware attention module is designed in CGRE to integrate the constraint information. Experimental results on a widely-used benchmark dataset indicate that our approach achieves significant improvements over the previous methods for both denoising and long-tailed relation extraction.