Abstract:The advances in digital tools have led to the rampant spread of misinformation. While fact-checking aims to combat this, manual fact-checking is cumbersome and not scalable. It is essential for automated fact-checking to be efficient for aiding in combating misinformation in real-time and at the source. Fact-checking pipelines primarily comprise a knowledge retrieval component which extracts relevant knowledge to fact-check a claim from large knowledge sources like Wikipedia and a verification component. The existing works primarily focus on the fact-verification part rather than evidence retrieval from large data collections, which often face scalability issues for practical applications such as live fact-checking. In this study, we address this gap by exploring various methods for indexing a succinct set of factual statements from large collections like Wikipedia to enhance the retrieval phase of the fact-checking pipeline. We also explore the impact of vector quantization to further improve the efficiency of pipelines that employ dense retrieval approaches for first-stage retrieval. We study the efficiency and effectiveness of the approaches on fact-checking datasets such as HoVer and WiCE, leveraging Wikipedia as the knowledge source. We also evaluate the real-world utility of the efficient retrieval approaches by fact-checking 2024 presidential debate and also open source the collection of claims with corresponding labels identified in the debate. Through a combination of indexed facts together with Dense retrieval and Index compression, we achieve up to a 10.0x speedup on CPUs and more than a 20.0x speedup on GPUs compared to the classical fact-checking pipelines over large collections.
Abstract:The field of automated fact-checking increasingly depends on retrieving web-based evidence to determine the veracity of claims in real-world scenarios. A significant challenge in this process is not only retrieving relevant information, but also identifying evidence that can both support and refute complex claims. Traditional retrieval methods may return documents that directly address claims or lean toward supporting them, but often struggle with more complex claims requiring indirect reasoning. While some existing benchmarks and methods target retrieval for fact-checking, a comprehensive real-world open-domain benchmark has been lacking. In this paper, we present a real-world retrieval benchmark FactIR, derived from Factiverse production logs, enhanced with human annotations. We rigorously evaluate state-of-the-art retrieval models in a zero-shot setup on FactIR and offer insights for developing practical retrieval systems for fact-checking. Code and data are available at https://github.com/factiverse/factIR.
Abstract:Answering reasoning-based complex questions over text and hybrid sources, including tables, is a challenging task. Recent advances in large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars). A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic). Static exemplars provide faster inference times and increased robustness across a distribution of test examples. In this paper, we propose an algorithm for static exemplar subset selection for complex reasoning tasks. We introduce EXPLORA, a novel exploration method designed to estimate the parameters of the scoring function, which evaluates exemplar subsets without incorporating confidence information. EXPLORA significantly reduces the number of LLM calls to ~11% of those required by state-of-the-art methods and achieves a substantial performance improvement of 12.24%. We open-source our code and data (https://github.com/kiranpurohit/EXPLORA).
Abstract:The advances in the digital era have led to rapid dissemination of information. This has also aggravated the spread of misinformation and disinformation. This has potentially serious consequences, such as civil unrest. While fact-checking aims to combat this, manual fact-checking is cumbersome and not scalable. While automated fact-checking approaches exist, they do not operate in real-time and do not always account for spread of misinformation through different modalities. This is particularly important as proactive fact-checking on live streams in real-time can help people be informed of false narratives and prevent catastrophic consequences that may cause civil unrest. This is particularly relevant with the rapid dissemination of information through video on social media platforms or other streams like political rallies and debates. Hence, in this work we develop a platform named \name{}, that can aid in fact-checking live audio streams in real-time. \name{} has a user-friendly interface that displays the claims detected along with their veracity and evidence for live streams with associated speakers for claims from respective segments. The app can be accessed at http://livefc.factiverse.ai and a screen recording of the demo can be found at https://bit.ly/3WVAoIw.
Abstract:An important problem in text-ranking systems is handling the hard queries that form the tail end of the query distribution. The difficulty may arise due to the presence of uncommon, underspecified, or incomplete queries. In this work, we improve the ranking performance of hard or difficult queries without compromising the performance of other queries. Firstly, we do LLM based query enrichment for training queries using relevant documents. Next, a specialized ranker is fine-tuned only on the enriched hard queries instead of the original queries. We combine the relevance scores from the specialized ranker and the base ranker, along with a query performance score estimated for each query. Our approach departs from existing methods that usually employ a single ranker for all queries, which is biased towards easy queries, which form the majority of the query distribution. In our extensive experiments on the DL-Hard dataset, we find that a principled query performance based scoring method using base and specialized ranker offers a significant improvement of up to 25% on the passage ranking task and up to 48.4% on the document ranking task when compared to the baseline performance of using original queries, even outperforming SOTA model.
Abstract:Automated fact checking has gained immense interest to tackle the growing misinformation in the digital era. Existing systems primarily focus on synthetic claims on Wikipedia, and noteworthy progress has also been made on real-world claims. In this work, we release Numtemp, a diverse, multi-domain dataset focused exclusively on numerical claims, encompassing temporal, statistical and diverse aspects with fine-grained metadata and an evidence collection without leakage. This addresses the challenge of verifying real-world numerical claims, which are complex and often lack precise information, not addressed by existing works that mainly focus on synthetic claims. We evaluate and quantify the limitations of existing solutions for the task of verifying numerical claims. We also evaluate claim decomposition based methods, numerical understanding based models and our best baselines achieves a macro-F1 of 58.32. This demonstrates that Numtemp serves as a challenging evaluation set for numerical claim verification.
Abstract:Answering complex questions is a challenging task that requires question decomposition and multistep reasoning for arriving at the solution. While existing supervised and unsupervised approaches are specialized to a certain task and involve training, recently proposed prompt-based approaches offer generalizable solutions to tackle a wide variety of complex question-answering (QA) tasks. However, existing prompt-based approaches that are effective for complex QA tasks involve expensive hand annotations from experts in the form of rationales and are not generalizable to newer complex QA scenarios and tasks. We propose, icat (In-Context Ability Transfer) which induces reasoning capabilities in LLMs without any LLM fine-tuning or manual annotation of in-context samples. We transfer the ability to decompose complex questions to simpler questions or generate step-by-step rationales to LLMs, by careful selection from available data sources of related tasks. We also propose an automated uncertainty-aware exemplar selection approach for selecting examples from transfer data sources. Finally, we conduct large-scale experiments on a variety of complex QA tasks involving numerical reasoning, compositional complex QA, and heterogeneous complex QA which require decomposed reasoning. We show that ICAT convincingly outperforms existing prompt-based solutions without involving any model training, showcasing the benefits of re-using existing abilities.
Abstract:Query rewriting refers to an established family of approaches that are applied to underspecified and ambiguous queries to overcome the vocabulary mismatch problem in document ranking. Queries are typically rewritten during query processing time for better query modelling for the downstream ranker. With the advent of large-language models (LLMs), there have been initial investigations into using generative approaches to generate pseudo documents to tackle this inherent vocabulary gap. In this work, we analyze the utility of LLMs for improved query rewriting for text ranking tasks. We find that there are two inherent limitations of using LLMs as query re-writers -- concept drift when using only queries as prompts and large inference costs during query processing. We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR) to leverage the benefits of LLMs for query understanding. Firstly, we rewrite ambiguous training queries by context-aware prompting of LLMs, where we use only relevant documents as context.Unlike existing approaches, we use LLM-based query rewriting only during the training phase. Eventually, a ranker is fine-tuned on the rewritten queries instead of the original queries during training. In our extensive experiments, we find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task when compared to the baseline performance of using original queries.
Abstract:Math Word Problems (MWPs) in online assessments help test the ability of the learner to make critical inferences by interpreting the linguistic information in them. To test the mathematical reasoning capabilities of the learners, sometimes the problem is rephrased or the thematic setting of the original MWP is changed. Since manual identification of MWPs with similar problem models is cumbersome, we propose a tool in this work for MWP retrieval. We propose a hybrid approach to retrieve similar MWPs with the same problem model. In our work, the problem model refers to the sequence of operations to be performed to arrive at the solution. We demonstrate that our tool is useful for the mentioned tasks and better than semantic similarity-based approaches, which fail to capture the arithmetic and logical sequence of the MWPs. A demo of the tool can be found at https://www.youtube.com/watch?v=gSQWP3chFIs
Abstract:Querying, conversing, and controlling search and information-seeking interfaces using natural language are fast becoming ubiquitous with the rise and adoption of large-language models (LLM). In this position paper, we describe a generic framework for interactive query-rewriting using LLMs. Our proposal aims to unfold new opportunities for improved and transparent intent understanding while building high-performance retrieval systems using LLMs. A key aspect of our framework is the ability of the rewriter to fully specify the machine intent by the search engine in natural language that can be further refined, controlled, and edited before the final retrieval phase. The ability to present, interact, and reason over the underlying machine intent in natural language has profound implications on transparency, ranking performance, and a departure from the traditional way in which supervised signals were collected for understanding intents. We detail the concept, backed by initial experiments, along with open questions for this interactive query understanding framework.