Abstract:With the rapid advancement of neural language models, the deployment of over-parameterized models has surged, increasing the need for interpretable explanations comprehensible to human inspectors. Existing post-hoc interpretability methods, which often focus on unigram features of single input textual instances, fail to capture the models' decision-making process fully. Additionally, many methods do not differentiate between decisions based on spurious correlations and those based on a holistic understanding of the input. Our paper introduces DISCO, a novel method for discovering global, rule-based explanations by identifying causal n-gram associations with model predictions. This method employs a scalable sequence mining technique to extract relevant text spans from training data, associate them with model predictions, and conduct causality checks to distill robust rules that elucidate model behavior. These rules expose potential overfitting and provide insights into misleading feature combinations. We validate DISCO through extensive testing, demonstrating its superiority over existing methods in offering comprehensive insights into complex model behaviors. Our approach successfully identifies all shortcuts manually introduced into the training data (100% detection rate on the MultiRC dataset), resulting in an 18.8% regression in model performance -- a capability unmatched by any other method. Furthermore, DISCO supports interactive explanations, enabling human inspectors to distinguish spurious causes in the rule-based output. This alleviates the burden of abundant instance-wise explanations and helps assess the model's risk when encountering out-of-distribution (OOD) data.
Abstract:Answering reasoning-based complex questions over text and hybrid sources, including tables, is a challenging task. Recent advances in large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars). A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic). Static exemplars provide faster inference times and increased robustness across a distribution of test examples. In this paper, we propose an algorithm for static exemplar subset selection for complex reasoning tasks. We introduce EXPLORA, a novel exploration method designed to estimate the parameters of the scoring function, which evaluates exemplar subsets without incorporating confidence information. EXPLORA significantly reduces the number of LLM calls to ~11% of those required by state-of-the-art methods and achieves a substantial performance improvement of 12.24%. We open-source our code and data (https://github.com/kiranpurohit/EXPLORA).
Abstract:Building relevance models to rank documents based on user information needs is a central task in information retrieval and the NLP community. Beyond the direct ad-hoc search setting, many knowledge-intense tasks are powered by a first-stage retrieval stage for context selection, followed by a more involved task-specific model. However, most first-stage ranking stages are inherently limited by the recall of the initial ranking documents. Recently, adaptive re-ranking techniques have been proposed to overcome this issue by continually selecting documents from the whole corpus, rather than only considering an initial pool of documents. However, so far these approaches have been limited to heuristic design choices, particularly in terms of the criteria for document selection. In this work, we propose a unifying view of the nascent area of adaptive retrieval by proposing, Quam, a \textit{query-affinity model} that exploits the relevance-aware document similarity graph to improve recall, especially for low re-ranking budgets. Our extensive experimental evidence shows that our proposed approach, Quam improves the recall performance by up to 26\% over the standard re-ranking baselines. Further, the query affinity modelling and relevance-aware document graph modules can be injected into any adaptive retrieval approach. The experimental results show the existing adaptive retrieval approach improves recall by up to 12\%. The code of our work is available at \url{https://github.com/Mandeep-Rathee/quam}.
Abstract:As information retrieval systems continue to evolve, accurate evaluation and benchmarking of these systems become pivotal. Web search datasets, such as MS MARCO, primarily provide short keyword queries without accompanying intent or descriptions, posing a challenge in comprehending the underlying information need. This paper proposes an approach to augmenting such datasets to annotate informative query descriptions, with a focus on two prominent benchmark datasets: TREC-DL-21 and TREC-DL-22. Our methodology involves utilizing state-of-the-art LLMs to analyze and comprehend the implicit intent within individual queries from benchmark datasets. By extracting key semantic elements, we construct detailed and contextually rich descriptions for these queries. To validate the generated query descriptions, we employ crowdsourcing as a reliable means of obtaining diverse human perspectives on the accuracy and informativeness of the descriptions. This information can be used as an evaluation set for tasks such as ranking, query rewriting, or others.
Abstract:Local feature selection in machine learning provides instance-specific explanations by focusing on the most relevant features for each prediction, enhancing the interpretability of complex models. However, such methods tend to produce misleading explanations by encoding additional information in their selections. In this work, we attribute the problem of misleading selections by formalizing the concepts of label and feature leakage. We rigorously derive the necessary and sufficient conditions under which we can guarantee no leakage, and show existing methods do not meet these conditions. Furthermore, we propose the first local feature selection method that is proven to have no leakage called SUWR. Our experimental results indicate that SUWR is less prone to overfitting and combines state-of-the-art predictive performance with high feature-selection sparsity. Our generic and easily extendable formal approach provides a strong theoretical basis for future work on interpretability with reliable explanations.
Abstract:Open-domain complex Question Answering (QA) is a difficult task with challenges in evidence retrieval and reasoning. The complexity of such questions could stem from questions being compositional, hybrid evidence, or ambiguity in questions. While retrieval performance for classical QA tasks is well explored, their capabilities for heterogeneous complex retrieval tasks, especially in an open-domain setting, and the impact on downstream QA performance, are relatively unexplored. To address this, in this work, we propose a benchmark composing diverse complex QA tasks and provide a toolkit to evaluate state-of-the-art pre-trained dense and sparse retrieval models in an open-domain setting. We observe that late interaction models and surprisingly lexical models like BM25 perform well compared to other pre-trained dense retrieval models. In addition, since context-based reasoning is critical for solving complex QA tasks, we also evaluate the reasoning capabilities of LLMs and the impact of retrieval performance on their reasoning capabilities. Through experiments, we observe that much progress is to be made in retrieval for complex QA to improve downstream QA performance. Our software and related data can be accessed at https://github.com/VenkteshV/DEXTER
Abstract:Experimental control involves a lot of manual effort with non-trivial decisions for precise adjustments. Here, we study the automatic experimental alignment for coupling laser light into an optical fiber using reinforcement learning (RL). We face several real-world challenges, such as time-consuming training, partial observability, and noisy actions due to imprecision in the mirror steering motors. We show that we can overcome these challenges: To save time, we use a virtual testbed to tune our environment for dealing with partial observability and use relatively sample-efficient model-free RL algorithms like Soft Actor-Critic (SAC) or Truncated Quantile Critics (TQC). Furthermore, by fully training on the experiment, the agent learns directly to handle the noise present. In our extensive experimentation, we show that we are able to achieve 90% coupling, showcasing the effectiveness of our proposed approaches. We reach this efficiency, which is comparable to that of a human expert, without additional feedback loops despite the motors' inaccuracies. Our result is an example of the readiness of RL for real-world tasks. We consider RL a promising tool for reducing the workload in labs.
Abstract:Neural ranking models have become increasingly popular for real-world search and recommendation systems in recent years. Unlike their tree-based counterparts, neural models are much less interpretable. That is, it is very difficult to understand their inner workings and answer questions like how do they make their ranking decisions? or what document features do they find important? This is particularly disadvantageous since interpretability is highly important for real-world systems. In this work, we explore feature selection for neural learning-to-rank (LTR). In particular, we investigate six widely-used methods from the field of interpretable machine learning (ML) and introduce our own modification, to select the input features that are most important to the ranking behavior. To understand whether these methods are useful for practitioners, we further study whether they contribute to efficiency enhancement. Our experimental results reveal a large feature redundancy in several LTR benchmarks: the local selection method TabNet can achieve optimal ranking performance with less than 10 features; the global methods, particularly our G-L2X, require slightly more selected features, but exhibit higher potential in improving efficiency. We hope that our analysis of these feature selection methods will bring the fields of interpretable ML and LTR closer together.
Abstract:An important problem in text-ranking systems is handling the hard queries that form the tail end of the query distribution. The difficulty may arise due to the presence of uncommon, underspecified, or incomplete queries. In this work, we improve the ranking performance of hard or difficult queries without compromising the performance of other queries. Firstly, we do LLM based query enrichment for training queries using relevant documents. Next, a specialized ranker is fine-tuned only on the enriched hard queries instead of the original queries. We combine the relevance scores from the specialized ranker and the base ranker, along with a query performance score estimated for each query. Our approach departs from existing methods that usually employ a single ranker for all queries, which is biased towards easy queries, which form the majority of the query distribution. In our extensive experiments on the DL-Hard dataset, we find that a principled query performance based scoring method using base and specialized ranker offers a significant improvement of up to 25% on the passage ranking task and up to 48.4% on the document ranking task when compared to the baseline performance of using original queries, even outperforming SOTA model.
Abstract:Automated fact checking has gained immense interest to tackle the growing misinformation in the digital era. Existing systems primarily focus on synthetic claims on Wikipedia, and noteworthy progress has also been made on real-world claims. In this work, we release Numtemp, a diverse, multi-domain dataset focused exclusively on numerical claims, encompassing temporal, statistical and diverse aspects with fine-grained metadata and an evidence collection without leakage. This addresses the challenge of verifying real-world numerical claims, which are complex and often lack precise information, not addressed by existing works that mainly focus on synthetic claims. We evaluate and quantify the limitations of existing solutions for the task of verifying numerical claims. We also evaluate claim decomposition based methods, numerical understanding based models and our best baselines achieves a macro-F1 of 58.32. This demonstrates that Numtemp serves as a challenging evaluation set for numerical claim verification.