Abstract:We introduce LPT++, a comprehensive framework for long-tailed classification that combines parameter-efficient fine-tuning (PEFT) with a learnable model ensemble. LPT++ enhances frozen Vision Transformers (ViTs) through the integration of three core components. The first is a universal long-tailed adaptation module, which aggregates long-tailed prompts and visual adapters to adapt the pretrained model to the target domain, meanwhile improving its discriminative ability. The second is the mixture of long-tailed experts framework with a mixture-of-experts (MoE) scorer, which adaptively calculates reweighting coefficients for confidence scores from both visual-only and visual-language (VL) model experts to generate more accurate predictions. Finally, LPT++ employs a three-phase training framework, wherein each critical module is learned separately, resulting in a stable and effective long-tailed classification training paradigm. Besides, we also propose the simple version of LPT++ namely LPT, which only integrates visual-only pretrained ViT and long-tailed prompts to formulate a single model method. LPT can clearly illustrate how long-tailed prompts works meanwhile achieving comparable performance without VL pretrained models. Experiments show that, with only ~1% extra trainable parameters, LPT++ achieves comparable accuracy against all the counterparts.
Abstract:Model Weight Averaging (MWA) is a technique that seeks to enhance model's performance by averaging the weights of multiple trained models. This paper first empirically finds that 1) the vanilla MWA can benefit the class-imbalanced learning, and 2) performing model averaging in the early epochs of training yields a greater performance improvement than doing that in later epochs. Inspired by these two observations, in this paper we propose a novel MWA technique for class-imbalanced learning tasks named Iterative Model Weight Averaging (IMWA). Specifically, IMWA divides the entire training stage into multiple episodes. Within each episode, multiple models are concurrently trained from the same initialized model weight, and subsequently averaged into a singular model. Then, the weight of this average model serves as a fresh initialization for the ensuing episode, thus establishing an iterative learning paradigm. Compared to vanilla MWA, IMWA achieves higher performance improvements with the same computational cost. Moreover, IMWA can further enhance the performance of those methods employing EMA strategy, demonstrating that IMWA and EMA can complement each other. Extensive experiments on various class-imbalanced learning tasks, i.e., class-imbalanced image classification, semi-supervised class-imbalanced image classification and semi-supervised object detection tasks showcase the effectiveness of our IMWA.
Abstract:In this paper, we delve into the realm of vision transformers for continual semantic segmentation, a problem that has not been sufficiently explored in previous literature. Empirical investigations on the adaptation of existing frameworks to vanilla ViT reveal that incorporating visual adapters into ViTs or fine-tuning ViTs with distillation terms is advantageous for enhancing the segmentation capability of novel classes. These findings motivate us to propose Continual semantic Segmentation via Adapter-based ViT, namely ConSept. Within the simplified architecture of ViT with linear segmentation head, ConSept integrates lightweight attention-based adapters into vanilla ViTs. Capitalizing on the feature adaptation abilities of these adapters, ConSept not only retains superior segmentation ability for old classes, but also attains promising segmentation quality for novel classes. To further harness the intrinsic anti-catastrophic forgetting ability of ConSept and concurrently enhance the segmentation capabilities for both old and new classes, we propose two key strategies: distillation with a deterministic old-classes boundary for improved anti-catastrophic forgetting, and dual dice losses to regularize segmentation maps, thereby improving overall segmentation performance. Extensive experiments show the effectiveness of ConSept on multiple continual semantic segmentation benchmarks under overlapped or disjoint settings. Code will be publicly available at \url{https://github.com/DongSky/ConSept}.
Abstract:In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose \emph{SALAD-Bench}, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under https://github.com/OpenSafetyLab/SALAD-BENCH.
Abstract:Recent works learn 3D representation explicitly under text-3D guidance. However, limited text-3D data restricts the vocabulary scale and text control of generations. Generators may easily fall into a stereotype concept for certain text prompts, thus losing open-vocabulary generation ability. To tackle this issue, we introduce a conditional 3D generative model, namely TextField3D. Specifically, rather than using the text prompts as input directly, we suggest to inject dynamic noise into the latent space of given text prompts, i.e., Noisy Text Fields (NTFs). In this way, limited 3D data can be mapped to the appropriate range of textual latent space that is expanded by NTFs. To this end, an NTFGen module is proposed to model general text latent code in noisy fields. Meanwhile, an NTFBind module is proposed to align view-invariant image latent code to noisy fields, further supporting image-conditional 3D generation. To guide the conditional generation in both geometry and texture, multi-modal discrimination is constructed with a text-3D discriminator and a text-2.5D discriminator. Compared to previous methods, TextField3D includes three merits: 1) large vocabulary, 2) text consistency, and 3) low latency. Extensive experiments demonstrate that our method achieves a potential open-vocabulary 3D generation capability.
Abstract:Knowledge base question answering (KBQA) is a critical yet challenging task due to the vast number of entities within knowledge bases and the diversity of natural language questions posed by users. Unfortunately, the performance of most KBQA models tends to decline significantly in real-world scenarios where high-quality annotated data is insufficient. To mitigate the burden associated with manual annotation, we introduce FlexKBQA by utilizing Large Language Models (LLMs) as program translators for addressing the challenges inherent in the few-shot KBQA task. Specifically, FlexKBQA leverages automated algorithms to sample diverse programs, such as SPARQL queries, from the knowledge base, which are subsequently converted into natural language questions via LLMs. This synthetic dataset facilitates training a specialized lightweight model for the KB. Additionally, to reduce the barriers of distribution shift between synthetic data and real user questions, FlexKBQA introduces an executionguided self-training method to iterative leverage unlabeled user questions. Furthermore, we explore harnessing the inherent reasoning capability of LLMs to enhance the entire framework. Consequently, FlexKBQA delivers substantial flexibility, encompassing data annotation, deployment, and being domain agnostic. Through extensive experiments on GrailQA, WebQSP, and KQA Pro, we observe that under the few-shot even the more challenging zero-shot scenarios, FlexKBQA achieves impressive results with a few annotations, surpassing all previous baselines and even approaching the performance of supervised models, achieving a remarkable 93% performance relative to the fully-supervised models. We posit that FlexKBQA represents a significant advancement towards exploring better integration of large and lightweight models. The code is open-sourced.
Abstract:Recent investigations show that large language models (LLMs), specifically GPT-4, not only have remarkable capabilities in common Natural Language Processing (NLP) tasks but also exhibit human-level performance on various professional and academic benchmarks. However, whether GPT-4 can be directly used in practical applications and replace traditional artificial intelligence (AI) tools in specialized domains requires further experimental validation. In this paper, we explore the potential of LLMs such as GPT-4 to outperform traditional AI tools in dementia diagnosis. Comprehensive comparisons between GPT-4 and traditional AI tools are conducted to examine their diagnostic accuracy in a clinical setting. Experimental results on two real clinical datasets show that, although LLMs like GPT-4 demonstrate potential for future advancements in dementia diagnosis, they currently do not surpass the performance of traditional AI tools. The interpretability and faithfulness of GPT-4 are also evaluated by comparison with real doctors. We discuss the limitations of GPT-4 in its current state and propose future research directions to enhance GPT-4 in dementia diagnosis.
Abstract:Existing open-world universal segmentation approaches usually leverage CLIP and pre-computed proposal masks to treat open-world segmentation tasks as proposal classification. However, 1) these works cannot handle universal segmentation in an end-to-end manner, and 2) the limited scale of panoptic datasets restricts the open-world segmentation ability on things classes. In this paper, we present Vision-Language Omni-Supervised Segmentation (VLOSS). VLOSS starts from a Mask2Former universal segmentation framework with CLIP text encoder. To improve the open-world segmentation ability, we leverage omni-supervised data (i.e., panoptic segmentation data, object detection data, and image-text pairs data) into training, thus enriching the open-world segmentation ability and achieving better segmentation accuracy. To better improve the training efficiency and fully release the power of omni-supervised data, we propose several advanced techniques, i.e., FPN-style encoder, switchable training technique, and positive classification loss. Benefiting from the end-to-end training manner with proposed techniques, VLOSS can be applied to various open-world segmentation tasks without further adaptation. Experimental results on different open-world panoptic and instance segmentation benchmarks demonstrate the effectiveness of VLOSS. Notably, with fewer parameters, our VLOSS with Swin-Tiny backbone surpasses MaskCLIP by ~2% in terms of mask AP on LVIS v1 dataset.
Abstract:Structured tabular data exist across nearly all fields. Reasoning task over these data aims to answer questions or determine the truthiness of hypothesis sentences by understanding the semantic meaning of a table. While previous works have devoted significant efforts to the tabular reasoning task, they always assume there are sufficient labeled data. However, constructing reasoning samples over tables (and related text) is labor-intensive, especially when the reasoning process is complex. When labeled data is insufficient, the performance of models will suffer an unendurable decline. In this paper, we propose a unified framework for unsupervised complex tabular reasoning (UCTR), which generates sufficient and diverse synthetic data with complex logic for tabular reasoning tasks, assuming no human-annotated data at all. We first utilize a random sampling strategy to collect diverse programs of different types and execute them on tables based on a "Program-Executor" module. To bridge the gap between the programs and natural language sentences, we design a powerful "NL-Generator" module to generate natural language sentences with complex logic from these programs. Since a table often occurs with its surrounding texts, we further propose novel "Table-to-Text" and "Text-to-Table" operators to handle joint table-text reasoning scenarios. This way, we can adequately exploit the unlabeled table resources to obtain a well-performed reasoning model under an unsupervised setting. Our experiments cover different tasks (question answering and fact verification) and different domains (general and specific), showing that our unsupervised methods can achieve at most 93% performance compared to supervised models. We also find that it can substantially boost the supervised performance in low-resourced domains as a data augmentation technique. Our code is available at https://github.com/leezythu/UCTR.
Abstract:Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., images) is by default prerequisite for learning prompts in existing methods. In this work, we advocate that the effectiveness of image-text contrastive learning in aligning the two modalities (for training CLIP) further makes it feasible to treat texts as images for prompt tuning and introduce TaI prompting. In contrast to the visual data, text descriptions are easy to collect, and their class labels can be directly derived. Particularly, we apply TaI prompting to multi-label image recognition, where sentences in the wild serve as alternatives to images for prompt tuning. Moreover, with TaI, double-grained prompt tuning (TaI-DPT) is further presented to extract both coarse-grained and fine-grained embeddings for enhancing the multi-label recognition performance. Experimental results show that our proposed TaI-DPT outperforms zero-shot CLIP by a large margin on multiple benchmarks, e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can be combined with existing methods of prompting from images to improve recognition performance further. Code is released at https://github.com/guozix/TaI-DPT.