Jack
Abstract:The rise of Foundation Models (FMs) like Large Language Models (LLMs) is revolutionizing software development. Despite the impressive prototypes, transforming FMware into production-ready products demands complex engineering across various domains. A critical but overlooked aspect is performance engineering, which aims at ensuring FMware meets performance goals such as throughput and latency to avoid user dissatisfaction and financial loss. Often, performance considerations are an afterthought, leading to costly optimization efforts post-deployment. FMware's high computational resource demands highlight the need for efficient hardware use. Continuous performance engineering is essential to prevent degradation. This paper highlights the significance of Software Performance Engineering (SPE) in FMware, identifying four key challenges: cognitive architecture design, communication protocols, tuning and optimization, and deployment. These challenges are based on literature surveys and experiences from developing an in-house FMware system. We discuss problems, current practices, and innovative paths for the software engineering community.
Abstract:Dynamical systems theory has long provided a foundation for understanding evolving phenomena across scientific domains. Yet, the application of this theory to complex real-world systems remains challenging due to issues in mathematical modeling, nonlinearity, and high dimensionality. In this work, we introduce a data-driven computational framework to derive low-dimensional linear models for nonlinear dynamical systems directly from raw experimental data. This framework enables global stability analysis through interpretable linear models that capture the underlying system structure. Our approach employs time-delay embedding, physics-informed deep autoencoders, and annealing-based regularization to identify novel low-dimensional coordinate representations, unlocking insights across a variety of simulated and previously unstudied experimental dynamical systems. These new coordinate representations enable accurate long-horizon predictions and automatic identification of intricate invariant sets while providing empirical stability guarantees. Our method offers a promising pathway to analyze complex dynamical behaviors across fields such as physics, climate science, and engineering, with broad implications for understanding nonlinear systems in the real world.
Abstract:The recent rapid advancement of machine learning has been driven by increasingly powerful models with the growing availability of training data and computational resources. However, real-time decision-making tasks with limited time and sparse learning signals remain challenging. One way of improving the learning speed and performance of these agents is to leverage human guidance. In this work, we introduce GUIDE, a framework for real-time human-guided reinforcement learning by enabling continuous human feedback and grounding such feedback into dense rewards to accelerate policy learning. Additionally, our method features a simulated feedback module that learns and replicates human feedback patterns in an online fashion, effectively reducing the need for human input while allowing continual training. We demonstrate the performance of our framework on challenging tasks with sparse rewards and visual observations. Our human study involving 50 subjects offers strong quantitative and qualitative evidence of the effectiveness of our approach. With only 10 minutes of human feedback, our algorithm achieves up to 30% increase in success rate compared to its RL baseline.
Abstract:In this paper, we study an inverse reinforcement learning problem that involves learning the reward function of a learning agent using trajectory data collected while this agent is learning its optimal policy. To address this problem, we propose an inverse reinforcement learning method that allows us to estimate the policy parameters of the learning agent which can then be used to estimate its reward function. Our method relies on a new variant of the behavior cloning algorithm, which we call bundle behavior cloning, and uses a small number of trajectories generated by the learning agent's policy at different points in time to learn a set of policies that match the distribution of actions observed in the sampled trajectories. We then use the cloned policies to train a neural network model that estimates the reward function of the learning agent. We provide a theoretical analysis to show a complexity result on bound guarantees for our method that beats standard behavior cloning as well as numerical experiments for a reinforcement learning problem that validate the proposed method.
Abstract:Dynamical systems form the foundation of scientific discovery, traditionally modeled with predefined state variables such as the angle and angular velocity, and differential equations such as the equation of motion for a single pendulum. We propose an approach to discover a set of state variables that preserve the smoothness of the system dynamics and to construct a vector field representing the system's dynamics equation, automatically from video streams without prior physical knowledge. The prominence and effectiveness of the proposed approach are demonstrated through both quantitative and qualitative analyses of various dynamical systems, including the prediction of characteristic frequencies and the identification of chaotic and limit cycle behaviors. This shows the potential of our approach to assist human scientists in scientific discovery.
Abstract:The rise of AI-assisted software engineering (SE 2.0), powered by Foundation Models (FMs) and FM-powered copilots, has shown promise in improving developer productivity. However, it has also exposed inherent limitations, such as cognitive overload on developers and inefficiencies. We propose a shift towards Software Engineering 3.0 (SE 3.0), an AI-native approach characterized by intent-first, conversation-oriented development between human developers and AI teammates. SE 3.0 envisions AI systems evolving beyond task-driven copilots into intelligent collaborators, capable of deeply understanding and reasoning about software engineering principles and intents. We outline the key components of the SE 3.0 technology stack, which includes Teammate.next for adaptive and personalized AI partnership, IDE.next for intent-first conversation-oriented development, Compiler.next for multi-objective code synthesis, and Runtime.next for SLA-aware execution with edge-computing support. Our vision addresses the inefficiencies and cognitive strain of SE 2.0 by fostering a symbiotic relationship between human developers and AI, maximizing their complementary strengths. We also present a roadmap of challenges that must be overcome to realize our vision of SE 3.0. This paper lays the foundation for future discussions on the role of AI in the next era of software engineering.
Abstract:Learning collaborative behaviors is essential for multi-agent systems. Traditionally, multi-agent reinforcement learning solves this implicitly through a joint reward and centralized observations, assuming collaborative behavior will emerge. Other studies propose to learn from demonstrations of a group of collaborative experts. Instead, we propose an efficient and explicit way of learning collaborative behaviors in multi-agent systems by leveraging expertise from only a single human. Our insight is that humans can naturally take on various roles in a team. We show that agents can effectively learn to collaborate by allowing a human operator to dynamically switch between controlling agents for a short period and incorporating a human-like theory-of-mind model of teammates. Our experiments showed that our method improves the success rate of a challenging collaborative hide-and-seek task by up to 58$% with only 40 minutes of human guidance. We further demonstrate our findings transfer to the real world by conducting multi-robot experiments.
Abstract:We propose WildFusion, a novel approach for 3D scene reconstruction in unstructured, in-the-wild environments using multimodal implicit neural representations. WildFusion integrates signals from LiDAR, RGB camera, contact microphones, tactile sensors, and IMU. This multimodal fusion generates comprehensive, continuous environmental representations, including pixel-level geometry, color, semantics, and traversability. Through real-world experiments on legged robot navigation in challenging forest environments, WildFusion demonstrates improved route selection by accurately predicting traversability. Our results highlight its potential to advance robotic navigation and 3D mapping in complex outdoor terrains.
Abstract:We present the Duke Humanoid, an open-source 10-degrees-of-freedom humanoid, as an extensible platform for locomotion research. The design mimics human physiology, with minimized leg distances and symmetrical body alignment in the frontal plane to maintain static balance with straight knees. We develop a reinforcement learning policy that can be deployed zero-shot on the hardware for velocity-tracking walking tasks. Additionally, to enhance energy efficiency in locomotion, we propose an end-to-end reinforcement learning algorithm that encourages the robot to leverage passive dynamics. Our experiment results show that our passive policy reduces the cost of transport by up to $50\%$ in simulation and $31\%$ in real-world testing. Our website is http://generalroboticslab.com/DukeHumanoidv1/ .
Abstract:End-to-end architectures in autonomous driving (AD) face a significant challenge in interpretability, impeding human-AI trust. Human-friendly natural language has been explored for tasks such as driving explanation and 3D captioning. However, previous works primarily focused on the paradigm of declarative interpretability, where the natural language interpretations are not grounded in the intermediate outputs of AD systems, making the interpretations only declarative. In contrast, aligned interpretability establishes a connection between language and the intermediate outputs of AD systems. Here we introduce Hint-AD, an integrated AD-language system that generates language aligned with the holistic perception-prediction-planning outputs of the AD model. By incorporating the intermediate outputs and a holistic token mixer sub-network for effective feature adaptation, Hint-AD achieves desirable accuracy, achieving state-of-the-art results in driving language tasks including driving explanation, 3D dense captioning, and command prediction. To facilitate further study on driving explanation task on nuScenes, we also introduce a human-labeled dataset, Nu-X. Codes, dataset, and models will be publicly available.