Abstract:Existing industrial anomaly detection (IAD) methods predict anomaly scores for both anomaly detection and localization. However, they struggle to perform a multi-turn dialog and detailed descriptions for anomaly regions, e.g., color, shape, and categories of industrial anomalies. Recently, large multimodal (i.e., vision and language) models (LMMs) have shown eminent perception abilities on multiple vision tasks such as image captioning, visual understanding, visual reasoning, etc., making it a competitive potential choice for more comprehensible anomaly detection. However, the knowledge about anomaly detection is absent in existing general LMMs, while training a specific LMM for anomaly detection requires a tremendous amount of annotated data and massive computation resources. In this paper, we propose a novel large multi-modal model by applying vision experts for industrial anomaly detection (dubbed Myriad), which leads to definite anomaly detection and high-quality anomaly description. Specifically, we adopt MiniGPT-4 as the base LMM and design an Expert Perception module to embed the prior knowledge from vision experts as tokens which are intelligible to Large Language Models (LLMs). To compensate for the errors and confusions of vision experts, we introduce a domain adapter to bridge the visual representation gaps between generic and industrial images. Furthermore, we propose a Vision Expert Instructor, which enables the Q-Former to generate IAD domain vision-language tokens according to vision expert prior. Extensive experiments on MVTec-AD and VisA benchmarks demonstrate that our proposed method not only performs favorably against state-of-the-art methods under the 1-class and few-shot settings, but also provide definite anomaly prediction along with detailed descriptions in IAD domain.
Abstract:The study of multi-task learning has drawn great attention from the community. Despite the remarkable progress, the challenge of optimally learning different tasks simultaneously remains to be explored. Previous works attempt to modify the gradients from different tasks. Yet these methods give a subjective assumption of the relationship between tasks, and the modified gradient may be less accurate. In this paper, we introduce Stochastic Task Allocation~(STA), a mechanism that addresses this issue by a task allocation approach, in which each sample is randomly allocated a subset of tasks. For further progress, we propose Interleaved Stochastic Task Allocation~(ISTA) to iteratively allocate all tasks to each example during several consecutive iterations. We evaluate STA and ISTA on various datasets and applications: NYUv2, Cityscapes, and COCO for scene understanding and instance segmentation. Our experiments show both STA and ISTA outperform current state-of-the-art methods. The code will be available.