Abstract:There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i.e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems. As a result, several LLM-based ABMs have been proposed in the past year. While they hold promise, each simulator is specifically designed to study a particular scenario, making it time-consuming and resource-intensive to explore other phenomena using the same ABM. Additionally, these models simulate only a limited number of agents, whereas real-world social media platforms involve millions of users. To this end, we propose OASIS, a generalizable and scalable social media simulator. OASIS is designed based on real-world social media platforms, incorporating dynamically updated environments (i.e., dynamic social networks and post information), diverse action spaces (i.e., following, commenting), and recommendation systems (i.e., interest-based and hot-score-based). Additionally, OASIS supports large-scale user simulations, capable of modeling up to one million users. With these features, OASIS can be easily extended to different social media platforms to study large-scale group phenomena and behaviors. We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms. Moreover, we provide observations of social phenomena at different agent group scales. We observe that the larger agent group scale leads to more enhanced group dynamics and more diverse and helpful agents' opinions. These findings demonstrate OASIS's potential as a powerful tool for studying complex systems in digital environments.
Abstract:Personality psychologists have analyzed the relationship between personality and safety behaviors in human society. Although Large Language Models (LLMs) demonstrate personality traits, the relationship between personality traits and safety abilities in LLMs still remains a mystery. In this paper, we discover that LLMs' personality traits are closely related to their safety abilities, i.e., toxicity, privacy, and fairness, based on the reliable MBTI-M scale. Meanwhile, the safety alignment generally increases various LLMs' Extraversion, Sensing, and Judging traits. According to such findings, we can edit LLMs' personality traits and improve their safety performance, e.g., inducing personality from ISTJ to ISTP resulted in a relative improvement of approximately 43% and 10% in privacy and fairness performance, respectively. Additionally, we find that LLMs with different personality traits are differentially susceptible to jailbreak. This study pioneers the investigation of LLM safety from a personality perspective, providing new insights into LLM safety enhancement.