Abstract:Domain Generalized Semantic Segmentation (DGSS) seeks to utilize source domain data exclusively to enhance the generalization of semantic segmentation across unknown target domains. Prevailing studies predominantly concentrate on feature normalization and domain randomization, these approaches exhibit significant limitations. Feature normalization-based methods tend to confuse semantic features in the process of constraining the feature space distribution, resulting in classification misjudgment. Domain randomization-based methods frequently incorporate domain-irrelevant noise due to the uncontrollability of style transformations, resulting in segmentation ambiguity. To address these challenges, we introduce a novel framework, named SCSD for Semantic Consistency prediction and Style Diversity generalization. It comprises three pivotal components: Firstly, a Semantic Query Booster is designed to enhance the semantic awareness and discrimination capabilities of object queries in the mask decoder, enabling cross-domain semantic consistency prediction. Secondly, we develop a Text-Driven Style Transform module that utilizes domain difference text embeddings to controllably guide the style transformation of image features, thereby increasing inter-domain style diversity. Lastly, to prevent the collapse of similar domain feature spaces, we introduce a Style Synergy Optimization mechanism that fortifies the separation of inter-domain features and the aggregation of intra-domain features by synergistically weighting style contrastive loss and style aggregation loss. Extensive experiments demonstrate that the proposed SCSD significantly outperforms existing state-of-theart methods. Notably, SCSD trained on GTAV achieved an average of 49.11 mIoU on the four unseen domain datasets, surpassing the previous state-of-the-art method by +4.08 mIoU. Code is available at https://github.com/nhw649/SCSD.
Abstract:Open-vocabulary panoptic segmentation aims to segment and classify everything in diverse scenes across an unbounded vocabulary. Existing methods typically employ two-stage or single-stage framework. The two-stage framework involves cropping the image multiple times using masks generated by a mask generator, followed by feature extraction, while the single-stage framework relies on a heavyweight mask decoder to make up for the lack of spatial position information through self-attention and cross-attention in multiple stacked Transformer blocks. Both methods incur substantial computational overhead, thereby hindering the efficiency of model inference. To fill the gap in efficiency, we propose EOV-Seg, a novel single-stage, shared, efficient, and spatial-aware framework designed for open-vocabulary panoptic segmentation. Specifically, EOV-Seg innovates in two aspects. First, a Vocabulary-Aware Selection (VAS) module is proposed to improve the semantic comprehension of visual aggregated features and alleviate the feature interaction burden on the mask decoder. Second, we introduce a Two-way Dynamic Embedding Experts (TDEE), which efficiently utilizes the spatial awareness capabilities of ViT-based CLIP backbone. To the best of our knowledge, EOV-Seg is the first open-vocabulary panoptic segmentation framework towards efficiency, which runs faster and achieves competitive performance compared with state-of-the-art methods. Specifically, with COCO training only, EOV-Seg achieves 24.2 PQ, 31.6 mIoU, and 12.7 FPS on the ADE20K dataset for panoptic and semantic segmentation tasks and the inference time of EOV-Seg is 4-21 times faster than state-of-the-art methods. Especially, equipped with ResNet-50 backbone, EOV-Seg runs 25 FPS with only 71M parameters on a single RTX 3090 GPU. Code is available at \url{https://github.com/nhw649/EOV-Seg}.