Abstract:Error correction (EC) models play a crucial role in refining Automatic Speech Recognition (ASR) transcriptions, enhancing the readability and quality of transcriptions. Without requiring access to the underlying code or model weights, EC can improve performance and provide domain adaptation for black-box ASR systems. This work investigates the use of large language models (LLMs) for error correction across diverse scenarios. 1-best ASR hypotheses are commonly used as the input to EC models. We propose building high-performance EC models using ASR N-best lists which should provide more contextual information for the correction process. Additionally, the generation process of a standard EC model is unrestricted in the sense that any output sequence can be generated. For some scenarios, such as unseen domains, this flexibility may impact performance. To address this, we introduce a constrained decoding approach based on the N-best list or an ASR lattice. Finally, most EC models are trained for a specific ASR system requiring retraining whenever the underlying ASR system is changed. This paper explores the ability of EC models to operate on the output of different ASR systems. This concept is further extended to zero-shot error correction using LLMs, such as ChatGPT. Experiments on three standard datasets demonstrate the efficacy of our proposed methods for both Transducer and attention-based encoder-decoder ASR systems. In addition, the proposed method can serve as an effective method for model ensembling.
Abstract:Foundation ASR models often support many languages, e.g. 100 languages in Whisper. However, there has been limited work on integrating an additional, typically low-resource, language, while maintaining performance on the original language set. Fine-tuning, while simple, may degrade the accuracy of the original set. We compare three approaches that exploit adaptation parameters: soft language code tuning, train only the language code; soft prompt tuning, train prepended tokens; and LoRA where a small set of additional parameters are optimised. Elastic Weight Consolidation (EWC) offers an alternative compromise with the potential to maintain performance in specific target languages. Results show that direct fine-tuning yields the best performance for the new language but degrades existing language capabilities. EWC can address this issue for specific languages. If only adaptation parameters are used, the language capabilities are maintained but at the cost of performance in the new language.
Abstract:There has been increasing interest in building multilingual foundation models for NLP and speech research. Zero-shot cross-lingual transfer has been demonstrated on a range of NLP tasks where a model fine-tuned on task-specific data in one language yields performance gains in other languages. Here, we explore whether speech-based models exhibit the same transfer capability. Using Whisper as an example of a multilingual speech foundation model, we examine the utterance representation generated by the speech encoder. Despite some language-sensitive information being preserved in the audio embedding, words from different languages are mapped to a similar semantic space, as evidenced by a high recall rate in a speech-to-speech retrieval task. Leveraging this shared embedding space, zero-shot cross-lingual transfer is demonstrated in speech translation. When the Whisper model is fine-tuned solely on English-to-Chinese translation data, performance improvements are observed for input utterances in other languages. Additionally, experiments on low-resource languages show that Whisper can perform speech translation for utterances from languages unseen during pre-training by utilizing cross-lingual representations.
Abstract:Recent developments in large speech foundation models like Whisper have led to their widespread use in many automatic speech recognition (ASR) applications. These systems incorporate `special tokens' in their vocabulary, such as $\texttt{<endoftext>}$, to guide their language generation process. However, we demonstrate that these tokens can be exploited by adversarial attacks to manipulate the model's behavior. We propose a simple yet effective method to learn a universal acoustic realization of Whisper's $\texttt{<endoftext>}$ token, which, when prepended to any speech signal, encourages the model to ignore the speech and only transcribe the special token, effectively `muting' the model. Our experiments demonstrate that the same, universal 0.64-second adversarial audio segment can successfully mute a target Whisper ASR model for over 97\% of speech samples. Moreover, we find that this universal adversarial audio segment often transfers to new datasets and tasks. Overall this work demonstrates the vulnerability of Whisper models to `muting' adversarial attacks, where such attacks can pose both risks and potential benefits in real-world settings: for example the attack can be used to bypass speech moderation systems, or conversely the attack can also be used to protect private speech data.
Abstract:Text and vision foundation models can perform many tasks in a zero-shot setting, a desirable property that enables these systems to be applied in general and low-resource settings. However, there has been significantly less work on the zero-shot abilities of ASR foundation models, with these systems typically fine-tuned to specific tasks or constrained to applications that match their training criterion and data annotation. In this work we investigate the ability of Whisper and MMS, ASR foundation models trained primarily for speech recognition, to perform zero-shot audio classification. We use simple template-based text prompts at the decoder and use the resulting decoding probabilities to generate zero-shot predictions. Without training the model on extra data or adding any new parameters, we demonstrate that Whisper shows promising zero-shot classification performance on a range of 8 audio-classification datasets, outperforming existing state-of-the-art zero-shot baseline's accuracy by an average of 9%. One important step to unlock the emergent ability is debiasing, where a simple unsupervised reweighting method of the class probabilities yields consistent significant performance gains. We further show that performance increases with model size, implying that as ASR foundation models scale up, they may exhibit improved zero-shot performance.
Abstract:Grammatical feedback is crucial for L2 learners, teachers, and testers. Spoken grammatical error correction (GEC) aims to supply feedback to L2 learners on their use of grammar when speaking. This process usually relies on a cascaded pipeline comprising an ASR system, disfluency removal, and GEC, with the associated concern of propagating errors between these individual modules. In this paper, we introduce an alternative "end-to-end" approach to spoken GEC, exploiting a speech recognition foundation model, Whisper. This foundation model can be used to replace the whole framework or part of it, e.g., ASR and disfluency removal. These end-to-end approaches are compared to more standard cascaded approaches on the data obtained from a free-speaking spoken language assessment test, Linguaskill. Results demonstrate that end-to-end spoken GEC is possible within this architecture, but the lack of available data limits current performance compared to a system using large quantities of text-based GEC data. Conversely, end-to-end disfluency detection and removal, which is easier for the attention-based Whisper to learn, does outperform cascaded approaches. Additionally, the paper discusses the challenges of providing feedback to candidates when using end-to-end systems for spoken GEC.
Abstract:The Multimodal Video Search by Examples (MVSE) project investigates using video clips as the query term for information retrieval, rather than the more traditional text query. This enables far richer search modalities such as images, speaker, content, topic, and emotion. A key element for this process is highly rapid, flexible, search to support large archives, which in MVSE is facilitated by representing video attributes by embeddings. This work aims to mitigate any performance loss from this rapid archive search by examining reranking approaches. In particular, zero-shot reranking methods using large language models are investigated as these are applicable to any video archive audio content. Performance is evaluated for topic-based retrieval on a publicly available video archive, the BBC Rewind corpus. Results demonstrate that reranking can achieve improved retrieval ranking without the need for any task-specific training data.
Abstract:A crucial part of an accurate and reliable spoken language assessment system is the underlying ASR model. Recently, large-scale pre-trained ASR foundation models such as Whisper have been made available. As the output of these models is designed to be human readable, punctuation is added, numbers are presented in Arabic numeric form and abbreviations are included. Additionally, these models have a tendency to skip disfluencies and hesitations in the output. Though useful for readability, these attributes are not helpful for assessing the ability of a candidate and providing feedback. Here a precise transcription of what a candidate said is needed. In this paper, we give a detailed analysis of Whisper outputs and propose two solutions: fine-tuning and soft prompt tuning. Experiments are conducted on both public speech corpora and an English learner dataset. Results show that we can effectively alter the decoding behaviour of Whisper to generate the exact words spoken in the response.
Abstract:ASR error correction continues to serve as an important part of post-processing for speech recognition systems. Traditionally, these models are trained with supervised training using the decoding results of the underlying ASR system and the reference text. This approach is computationally intensive and the model needs to be re-trained when switching the underlying ASR model. Recent years have seen the development of large language models and their ability to perform natural language processing tasks in a zero-shot manner. In this paper, we take ChatGPT as an example to examine its ability to perform ASR error correction in the zero-shot or 1-shot settings. We use the ASR N-best list as model input and propose unconstrained error correction and N-best constrained error correction methods. Results on a Conformer-Transducer model and the pre-trained Whisper model show that we can largely improve the ASR system performance with error correction using the powerful ChatGPT model.
Abstract:As speech recognition model sizes and training data requirements grow, it is increasingly common for systems to only be available via APIs from online service providers rather than having direct access to models themselves. In this scenario it is challenging to adapt systems to a specific target domain. To address this problem we consider the recently released OpenAI Whisper ASR as an example of a large-scale ASR system to assess adaptation methods. An error correction based approach is adopted, as this does not require access to the model, but can be trained from either 1-best or N-best outputs that are normally available via the ASR API. LibriSpeech is used as the primary target domain for adaptation. The generalization ability of the system in two distinct dimensions are then evaluated. First, whether the form of correction model is portable to other speech recognition domains, and secondly whether it can be used for ASR models having a different architecture.