Abstract:Stereo matching recovers depth from image correspondences. Existing methods struggle to handle ill-posed regions with limited matching cues, such as occlusions and textureless areas. To address this, we propose MonSter, a novel method that leverages the complementary strengths of monocular depth estimation and stereo matching. MonSter integrates monocular depth and stereo matching into a dual-branch architecture to iteratively improve each other. Confidence-based guidance adaptively selects reliable stereo cues for monodepth scale-shift recovery. The refined monodepth is in turn guides stereo effectively at ill-posed regions. Such iterative mutual enhancement enables MonSter to evolve monodepth priors from coarse object-level structures to pixel-level geometry, fully unlocking the potential of stereo matching. As shown in Fig.1, MonSter ranks 1st across five most commonly used leaderboards -- SceneFlow, KITTI 2012, KITTI 2015, Middlebury, and ETH3D. Achieving up to 49.5% improvements (Bad 1.0 on ETH3D) over the previous best method. Comprehensive analysis verifies the effectiveness of MonSter in ill-posed regions. In terms of zero-shot generalization, MonSter significantly and consistently outperforms state-of-the-art across the board. The code is publicly available at: https://github.com/Junda24/MonSter.
Abstract:State-of-the-art supervised stereo matching methods have achieved amazing results on various benchmarks. However, these data-driven methods suffer from generalization to real-world scenarios due to the lack of real-world annotated data. In this paper, we propose StereoGen, a novel pipeline for high-quality stereo image generation. This pipeline utilizes arbitrary single images as left images and pseudo disparities generated by a monocular depth estimation model to synthesize high-quality corresponding right images. Unlike previous methods that fill the occluded area in warped right images using random backgrounds or using convolutions to take nearby pixels selectively, we fine-tune a diffusion inpainting model to recover the background. Images generated by our model possess better details and undamaged semantic structures. Besides, we propose Training-free Confidence Generation and Adaptive Disparity Selection. The former suppresses the negative effect of harmful pseudo ground truth during stereo training, while the latter helps generate a wider disparity distribution and better synthetic images. Experiments show that models trained under our pipeline achieve state-of-the-art zero-shot generalization results among all published methods. The code will be available upon publication of the paper.
Abstract:Scene flow methods based on deep learning have achieved impressive performance. However, current top-performing methods still struggle with ill-posed regions, such as extensive flat regions or occlusions, due to insufficient local evidence. In this paper, we propose a novel global-aware scene flow estimation network with global motion propagation, named FlowMamba. The core idea of FlowMamba is a novel Iterative Unit based on the State Space Model (ISU), which first propagates global motion patterns and then adaptively integrates the global motion information with previously hidden states. As the irregular nature of point clouds limits the performance of ISU in global motion propagation, we propose a feature-induced ordering strategy (FIO). The FIO leverages semantic-related and motion-related features to order points into a sequence characterized by spatial continuity. Extensive experiments demonstrate the effectiveness of FlowMamba, with 21.9\% and 20.5\% EPE3D reduction from the best published results on FlyingThings3D and KITTI datasets. Specifically, our FlowMamba is the first method to achieve millimeter-level prediction accuracy in FlyingThings3D and KITTI. Furthermore, the proposed ISU can be seamlessly embedded into existing iterative networks as a plug-and-play module, improving their estimation accuracy significantly.
Abstract:Recent approaches to VO have significantly improved performance by using deep networks to predict optical flow between video frames. However, existing methods still suffer from noisy and inconsistent flow matching, making it difficult to handle challenging scenarios and long-sequence estimation. To overcome these challenges, we introduce Spatio-Temporal Visual Odometry (STVO), a novel deep network architecture that effectively leverages inherent spatio-temporal cues to enhance the accuracy and consistency of multi-frame flow matching. With more accurate and consistent flow matching, STVO can achieve better pose estimation through the bundle adjustment (BA). Specifically, STVO introduces two innovative components: 1) the Temporal Propagation Module that utilizes multi-frame information to extract and propagate temporal cues across adjacent frames, maintaining temporal consistency; 2) the Spatial Activation Module that utilizes geometric priors from the depth maps to enhance spatial consistency while filtering out excessive noise and incorrect matches. Our STVO achieves state-of-the-art performance on TUM-RGBD, EuRoc MAV, ETH3D and KITTI Odometry benchmarks. Notably, it improves accuracy by 77.8% on ETH3D benchmark and 38.9% on KITTI Odometry benchmark over the previous best methods.
Abstract:High dynamic range (HDR) imaging is a crucial task in computational photography, which captures details across diverse lighting conditions. Traditional HDR fusion methods face limitations in dynamic scenes with extreme exposure differences, as aligning low dynamic range (LDR) frames becomes challenging due to motion and brightness variation. In this work, we propose a novel 12-stop HDR imaging approach for dynamic scenes, leveraging a dual-camera system with an event camera and an RGB camera. The event camera provides temporally dense, high dynamic range signals that improve alignment between LDR frames with large exposure differences, reducing ghosting artifacts caused by motion. Also, a real-world finetuning strategy is proposed to increase the generalization of alignment module on real-world events. Additionally, we introduce a diffusion-based fusion module that incorporates image priors from pre-trained diffusion models to address artifacts in high-contrast regions and minimize errors from the alignment process. To support this work, we developed the ESHDR dataset, the first dataset for 12-stop HDR imaging with synchronized event signals, and validated our approach on both simulated and real-world data. Extensive experiments demonstrate that our method achieves state-of-the-art performance, successfully extending HDR imaging to 12 stops in dynamic scenes.
Abstract:Current state-of-the-art flow methods are mostly based on dense all-pairs cost volumes. However, as image resolution increases, the computational and spatial complexity of constructing these cost volumes grows at a quartic rate, making these methods impractical for high-resolution images. In this paper, we propose a novel Hybrid Cost Volume for memory-efficient optical flow, named HCV. To construct HCV, we first propose a Top-k strategy to separate the 4D cost volume into two global 3D cost volumes. These volumes significantly reduce memory usage while retaining a substantial amount of matching information. We further introduce a local 4D cost volume with a local search space to supplement the local information for HCV. Based on HCV, we design a memory-efficient optical flow network, named HCVFlow. Compared to the recurrent flow methods based the all-pairs cost volumes, our HCVFlow significantly reduces memory consumption while ensuring high accuracy. We validate the effectiveness and efficiency of our method on the Sintel and KITTI datasets and real-world 4K (2160*3840) resolution images. Extensive experiments show that our HCVFlow has very low memory usage and outperforms other memory-efficient methods in terms of accuracy. The code is publicly available at https://github.com/gangweiX/HCVFlow.
Abstract:Stereo matching is a core component in many computer vision and robotics systems. Despite significant advances over the last decade, handling matching ambiguities in ill-posed regions and large disparities remains an open challenge. In this paper, we propose a new deep network architecture, called IGEV++, for stereo matching. The proposed IGEV++ builds Multi-range Geometry Encoding Volumes (MGEV) that encode coarse-grained geometry information for ill-posed regions and large disparities and fine-grained geometry information for details and small disparities. To construct MGEV, we introduce an adaptive patch matching module that efficiently and effectively computes matching costs for large disparity ranges and/or ill-posed regions. We further propose a selective geometry feature fusion module to adaptively fuse multi-range and multi-granularity geometry features in MGEV. We then index the fused geometry features and input them to ConvGRUs to iteratively update the disparity map. MGEV allows to efficiently handle large disparities and ill-posed regions, such as occlusions and textureless regions, and enjoys rapid convergence during iterations. Our IGEV++ achieves the best performance on the Scene Flow test set across all disparity ranges, up to 768px. Our IGEV++ also achieves state-of-the-art accuracy on the Middlebury, ETH3D, KITTI 2012, and 2015 benchmarks. Specifically, IGEV++ achieves a 3.23% 2-pixel outlier rate (Bad 2.0) on the large disparity benchmark, Middlebury, representing error reductions of 31.9% and 54.8% compared to RAFT-Stereo and GMStereo, respectively. We also present a real-time version of IGEV++ that achieves the best performance among all published real-time methods on the KITTI benchmarks. The code is publicly available at https://github.com/gangweiX/IGEV-plusplus
Abstract:Reconstructing High Dynamic Range (HDR) video from image sequences captured with alternating exposures is challenging, especially in the presence of large camera or object motion. Existing methods typically align low dynamic range sequences using optical flow or attention mechanism for deghosting. However, they often struggle to handle large complex motions and are computationally expensive. To address these challenges, we propose a robust and efficient flow estimator tailored for real-time HDR video reconstruction, named HDRFlow. HDRFlow has three novel designs: an HDR-domain alignment loss (HALoss), an efficient flow network with a multi-size large kernel (MLK), and a new HDR flow training scheme. The HALoss supervises our flow network to learn an HDR-oriented flow for accurate alignment in saturated and dark regions. The MLK can effectively model large motions at a negligible cost. In addition, we incorporate synthetic data, Sintel, into our training dataset, utilizing both its provided forward flow and backward flow generated by us to supervise our flow network, enhancing our performance in large motion regions. Extensive experiments demonstrate that our HDRFlow outperforms previous methods on standard benchmarks. To the best of our knowledge, HDRFlow is the first real-time HDR video reconstruction method for video sequences captured with alternating exposures, capable of processing 720p resolution inputs at 25ms.
Abstract:Stereo matching methods based on iterative optimization, like RAFT-Stereo and IGEV-Stereo, have evolved into a cornerstone in the field of stereo matching. However, these methods struggle to simultaneously capture high-frequency information in edges and low-frequency information in smooth regions due to the fixed receptive field. As a result, they tend to lose details, blur edges, and produce false matches in textureless areas. In this paper, we propose Selective Recurrent Unit (SRU), a novel iterative update operator for stereo matching. The SRU module can adaptively fuse hidden disparity information at multiple frequencies for edge and smooth regions. To perform adaptive fusion, we introduce a new Contextual Spatial Attention (CSA) module to generate attention maps as fusion weights. The SRU empowers the network to aggregate hidden disparity information across multiple frequencies, mitigating the risk of vital hidden disparity information loss during iterative processes. To verify SRU's universality, we apply it to representative iterative stereo matching methods, collectively referred to as Selective-Stereo. Our Selective-Stereo ranks $1^{st}$ on KITTI 2012, KITTI 2015, ETH3D, and Middlebury leaderboards among all published methods. Code is available at https://github.com/Windsrain/Selective-Stereo.
Abstract:Collecting real-world optical flow datasets is a formidable challenge due to the high cost of labeling. A shortage of datasets significantly constrains the real-world performance of optical flow models. Building virtual datasets that resemble real scenarios offers a potential solution for performance enhancement, yet a domain gap separates virtual and real datasets. This paper introduces FlowDA, an unsupervised domain adaptive (UDA) framework for optical flow estimation. FlowDA employs a UDA architecture based on mean-teacher and integrates concepts and techniques in unsupervised optical flow estimation. Furthermore, an Adaptive Curriculum Weighting (ACW) module based on curriculum learning is proposed to enhance the training effectiveness. Experimental outcomes demonstrate that our FlowDA outperforms state-of-the-art unsupervised optical flow estimation method SMURF by 21.6%, real optical flow dataset generation method MPI-Flow by 27.8%, and optical flow estimation adaptive method FlowSupervisor by 30.9%, offering novel insights for enhancing the performance of optical flow estimation in real-world scenarios. The code will be open-sourced after the publication of this paper.