Abstract:Stereo matching is a core component in many computer vision and robotics systems. Despite significant advances over the last decade, handling matching ambiguities in ill-posed regions and large disparities remains an open challenge. In this paper, we propose a new deep network architecture, called IGEV++, for stereo matching. The proposed IGEV++ builds Multi-range Geometry Encoding Volumes (MGEV) that encode coarse-grained geometry information for ill-posed regions and large disparities and fine-grained geometry information for details and small disparities. To construct MGEV, we introduce an adaptive patch matching module that efficiently and effectively computes matching costs for large disparity ranges and/or ill-posed regions. We further propose a selective geometry feature fusion module to adaptively fuse multi-range and multi-granularity geometry features in MGEV. We then index the fused geometry features and input them to ConvGRUs to iteratively update the disparity map. MGEV allows to efficiently handle large disparities and ill-posed regions, such as occlusions and textureless regions, and enjoys rapid convergence during iterations. Our IGEV++ achieves the best performance on the Scene Flow test set across all disparity ranges, up to 768px. Our IGEV++ also achieves state-of-the-art accuracy on the Middlebury, ETH3D, KITTI 2012, and 2015 benchmarks. Specifically, IGEV++ achieves a 3.23% 2-pixel outlier rate (Bad 2.0) on the large disparity benchmark, Middlebury, representing error reductions of 31.9% and 54.8% compared to RAFT-Stereo and GMStereo, respectively. We also present a real-time version of IGEV++ that achieves the best performance among all published real-time methods on the KITTI benchmarks. The code is publicly available at https://github.com/gangweiX/IGEV-plusplus
Abstract:Existing 3D point-based dynamic point detection and removal methods have a significant time overhead, making them difficult to adapt to LiDAR-inertial odometry systems. This paper proposes a label consistency based dynamic point detection and removal method for handling moving vehicles and pedestrians in autonomous driving scenarios, and embeds the proposed dynamic point detection and removal method into a self-designed LiDAR-inertial odometry system. Experimental results on three public datasets demonstrate that our method can accomplish the dynamic point detection and removal with extremely low computational overhead (i.e., 1$\sim$9ms) in LIO systems, meanwhile achieve comparable preservation rate and rejection rate to state-of-the-art methods and significantly enhance the accuracy of pose estimation. We have released the source code of this work for the development of the community.
Abstract:Stereo matching is a fundamental task in scene comprehension. In recent years, the method based on iterative optimization has shown promise in stereo matching. However, the current iteration framework employs a single-peak lookup, which struggles to handle the multi-peak problem effectively. Additionally, the fixed search range used during the iteration process limits the final convergence effects. To address these issues, we present a novel iterative optimization architecture called MC-Stereo. This architecture mitigates the multi-peak distribution problem in matching through the multi-peak lookup strategy, and integrates the coarse-to-fine concept into the iterative framework via the cascade search range. Furthermore, given that feature representation learning is crucial for successful learnbased stereo matching, we introduce a pre-trained network to serve as the feature extractor, enhancing the front end of the stereo matching pipeline. Based on these improvements, MC-Stereo ranks first among all publicly available methods on the KITTI-2012 and KITTI-2015 benchmarks, and also achieves state-of-the-art performance on ETH3D. The code will be open sourced after the publication of this paper.
Abstract:Stereo matching is a fundamental building block for many vision and robotics applications. An informative and concise cost volume representation is vital for stereo matching of high accuracy and efficiency. In this paper, we present a novel cost volume construction method, named attention concatenation volume (ACV), which generates attention weights from correlation clues to suppress redundant information and enhance matching-related information in the concatenation volume. The ACV can be seamlessly embedded into most stereo matching networks, the resulting networks can use a more lightweight aggregation network and meanwhile achieve higher accuracy. We further design a fast version of ACV to enable real-time performance, named Fast-ACV, which generates high likelihood disparity hypotheses and the corresponding attention weights from low-resolution correlation clues to significantly reduce computational and memory cost and meanwhile maintain a satisfactory accuracy. The core idea of our Fast-ACV is volume attention propagation (VAP) which can automatically select accurate correlation values from an upsampled correlation volume and propagate these accurate values to the surroundings pixels with ambiguous correlation clues. Furthermore, we design a highly accurate network ACVNet and a real-time network Fast-ACVNet based on our ACV and Fast-ACV respectively, which achieve the state-of-the-art performance on several benchmarks (i.e., our ACVNet ranks the 2nd on KITTI 2015 and Scene Flow, and the 3rd on KITTI 2012 and ETH3D among all the published methods; our Fast-ACVNet outperforms almost all state-of-the-art real-time methods on Scene Flow, KITTI 2012 and 2015 and meanwhile has better generalization ability)
Abstract:Stereo matching is a fundamental building block for many vision and robotics applications. An informative and concise cost volume representation is vital for stereo matching of high accuracy and efficiency. In this paper, we present a novel cost volume construction method which generates attention weights from correlation clues to suppress redundant information and enhance matching-related information in the concatenation volume. To generate reliable attention weights, we propose multi-level adaptive patch matching to improve the distinctiveness of the matching cost at different disparities even for textureless regions. The proposed cost volume is named attention concatenation volume (ACV) which can be seamlessly embedded into most stereo matching networks, the resulting networks can use a more lightweight aggregation network and meanwhile achieve higher accuracy, e.g. using only 1/25 parameters of the aggregation network can achieve higher accuracy for GwcNet. Furthermore, we design a highly accurate network (ACVNet) based on our ACV, which achieves state-of-the-art performance on several benchmarks.