Abstract:Large-scale knowledge bases (KBs) like Freebase and Wikidata house millions of structured knowledge. Knowledge Base Question Answering (KBQA) provides a user-friendly way to access these valuable KBs via asking natural language questions. In order to improve the generalization capabilities of KBQA models, extensive research has embraced a retrieve-then-reason framework to retrieve relevant evidence for logical expression generation. These multi-stage efforts prioritize acquiring external sources but overlook the incorporation of new knowledge into their model parameters. In effect, even advanced language models and retrievers have knowledge boundaries, thereby limiting the generalization capabilities of previous KBQA models. Therefore, this paper develops KBLLaMA, which follows a learn-then-reason framework to inject new KB knowledge into a large language model for flexible end-to-end KBQA. At the core of KBLLaMA, we study (1) how to organize new knowledge about KBQA and (2) how to facilitate the learning of the organized knowledge. Extensive experiments on various KBQA generalization tasks showcase the state-of-the-art performance of KBLLaMA. Especially on the general benchmark GrailQA and domain-specific benchmark Bio-chemical, KBLLaMA respectively derives a performance gain of up to 3.8% and 9.8% compared to the baselines.
Abstract:Open-world semi-supervised learning (Open-world SSL) for node classification, that classifies unlabeled nodes into seen classes or multiple novel classes, is a practical but under-explored problem in the graph community. As only seen classes have human labels, they are usually better learned than novel classes, and thus exhibit smaller intra-class variances within the embedding space (named as imbalance of intra-class variances between seen and novel classes). Based on empirical and theoretical analysis, we find the variance imbalance can negatively impact the model performance. Pre-trained feature encoders can alleviate this issue via producing compact representations for novel classes. However, creating general pre-trained encoders for various types of graph data has been proven to be challenging. As such, there is a demand for an effective method that does not rely on pre-trained graph encoders. In this paper, we propose an IMbalance-Aware method named OpenIMA for Open-world semi-supervised node classification, which trains the node classification model from scratch via contrastive learning with bias-reduced pseudo labels. Extensive experiments on seven popular graph benchmarks demonstrate the effectiveness of OpenIMA, and the source code has been available on GitHub.
Abstract:Retrieval-augmented generation enhances large language models (LLMs) by incorporating relevant information from external knowledge sources. This enables LLMs to adapt to specific domains and mitigate hallucinations in knowledge-intensive tasks. However, existing retrievers are often misaligned with LLMs due to their separate training processes and the black-box nature of LLMs. To address this challenge, we propose ARL2, a retriever learning technique that harnesses LLMs as labelers. ARL2 leverages LLMs to annotate and score relevant evidence, enabling learning the retriever from robust LLM supervision. Furthermore, ARL2 uses an adaptive self-training strategy for curating high-quality and diverse relevance data, which can effectively reduce the annotation cost. Extensive experiments demonstrate the effectiveness of ARL2, achieving accuracy improvements of 5.4% on NQ and 4.6% on MMLU compared to the state-of-the-art methods. Additionally, ARL2 exhibits robust transfer learning capabilities and strong zero-shot generalization abilities. Our code will be published at \url{https://github.com/zhanglingxi-cs/ARL2}.
Abstract:The generalization problem on KBQA has drawn considerable attention. Existing research suffers from the generalization issue brought by the entanglement in the coarse-grained modeling of the logical expression, or inexecutability issues due to the fine-grained modeling of disconnected classes and relations in real KBs. We propose a Fine-to-Coarse Composition framework for KBQA (FC-KBQA) to both ensure the generalization ability and executability of the logical expression. The main idea of FC-KBQA is to extract relevant fine-grained knowledge components from KB and reformulate them into middle-grained knowledge pairs for generating the final logical expressions. FC-KBQA derives new state-of-the-art performance on GrailQA and WebQSP, and runs 4 times faster than the baseline.
Abstract:Knowledge graph reasoning is the fundamental component to support machine learning applications such as information extraction, information retrieval and recommendation. Since knowledge graph can be viewed as the discrete symbolic representations of knowledge, reasoning on knowledge graphs can naturally leverage the symbolic techniques. However, symbolic reasoning is intolerant of the ambiguous and noisy data. On the contrary, the recent advances of deep learning promote neural reasoning on knowledge graphs, which is robust to the ambiguous and noisy data, but lacks interpretability compared to symbolic reasoning. Considering the advantages and disadvantages of both methodologies, recent efforts have been made on combining the two reasoning methods. In this survey, we take a thorough look at the development of the symbolic reasoning, neural reasoning and the neural-symbolic reasoning on knowledge graphs. We survey two specific reasoning tasks, knowledge graph completion and question answering on knowledge graphs, and explain them in a unified reasoning framework. We also briefly discuss the future directions for knowledge graph reasoning.